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ABSTRACT 

Convolutional encoding is a Forward Error Correction (FEC) technique used in 

continuous one-way and real time communication links. It can provide substantial 

improvement in bit error rates so that small, low power, inexpensive transmitters can be 

used in such applications as satellites and hand-held communication devices. This thesis 

documents the development of a programmable convolutional encoder implemented in a 

Field Programmable Gate Array (FPGA) from Xilinx, Inc., called the XC3064 Logic Cell 

Array (LCA). The encoder is capable of coding a digital data stream with any one of 39 

convolutional codes. Because the LCA is used for the hardware implementation, the design 

can be changed or expanded conveniently in the lab. In particularly flexible systems, several 

encoder designs can be stored in the system RAM, each one being downloaded into the 

LCA under different circumstances. The encoder has a simple microprocessor interface, a 

register file for storage of code parameters, a test circuit, and a maximum bit rate of about 

15 Mbits/s. Special design techniques like one-hot state assignment, pipelining, and the use 

of redundant states are employed to tailor the hardware to the LCA architecture. Other 

ways to improve the output bit rate are suggested. The VHSIC Hardware Description 

Language (VHDL) is used to model abstract behavior and to define relationships between 

building blocks before the hardware implementation phase. 
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I. INTRODUCTION 

Convolutional encoding is a method of adding redundancy to a data stream in a 

controlled manner to give the destination the ability to correct bit errors without asking the 

source to retransmit. Convolutional codes, and other codes which can correct bit errors at 

the receiver, are called forward error correcting (FEC) codes. Contrast convolutional 

encoding with the common automatic repeat request (ARQ) error correction schemes 

which require a second communication channel between the source and destination. The 

receiver requests retransmissions from the source when it detects a bit error. The added 

delays due to retransmission requests and the actual retransmissions degrade the throughput 

of the communication link. Convolutional codes add reliability to the link while eliminating 

the need for a reverse channel. They are used in applications where retransmission of data is 

impractical or impossible, such as in space probes, or in broadcast satellites that transmit to 

multiple receivers simultaneously (Stallings, 1994, p. 149), or in real time speech 

transmissions. 

This thesis leads the reader through the entire design cycle of a programmable 

convolutional encoder that can be utilized in many different systems that use various 

convolutional codes. First, it explains the basics and advantages of convolutional encoding 

in Chapter II. Chapter III then describes the top-down design paradigm and breaks down 

the programmable encoder design into smaller building blocks, detailing the behavior of 

each block as it proceeds. After all of the blocks and their interconnectivity and interaction 

are defined, the chapter concludes with an example of the blocks working together as one 

unit. Chapter IV covers the VHDL source code used to model and simulate the encoder in 

an abstract, behavioral context. No hardware details are defined. Chapter V discusses Field 

Programmable Gate Arrays (FPGAs) in general, their limitations, and their advantages. It 



then gives a detailed treatment of the Xilinx XC3000 family of "Logic Cell Array", Xilinx 

Corp.'s name for "FPGA". The design described in this thesis will be implemented in a 

Xilinx XC3064 LCA. After the peculiarities of FPGAs are described, Chapter VI explains 

the one-hot state assignment technique, why it works better than conventional highly 

encoded state assignments, and how to use it to force flip-flop fan-in logic into a single 

FPGA logic block. The chapter uses one of the state machines of the encoder design to 

illustrate the method. Finally, Chapter VII describes the Xilinx development system and its 

various CAD programs. It also explains how simulation was used to estimate speed 

performance of the design and how pipeline registers were inserted into several blocks to 

improve combinational delay times and hence clock rate. The chapter concludes with a few 

comments about the Mentor Graphics Autologic tool and about the idea of back annotating 

performance data into the VHDL code. Neither the Autologic tool nor the back annotating 

idea proved useful in this work. 



H. CONVOLUTIONAL ENCODING 

This chapter presents the basics of convolutional encoding including its location in the 

communication link, how convolutional codes are described and implemented, and the 

benefits of using them. 

A. INTRODUCTION 

Figure 2.1 shows a basic communication link using convolutional encoding. An 

information source generates a sequence of message bits, m, and feeds them into a 

convolutional encoder. The encoder produces a sequence of coded bits, U, which modulates 

a waveform. The waveform, s;(t), travels through a channel where it is corrupted by 

additive white Gaussian noise (AWGN). The corrupted signal, s'i(t), is demodulated to 

recover the coded bits, Z, which contain bit errors because of the AWGN. The 

convolutional decoder then takes advantage of the redundancy added by the code to correct 

bit errors, producing an estimate of the original bit stream, m\ The estimate is very close, if 

not identical, to the original, m. (Sklar, 1988) 
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Figure 2.1. Relationship of encoding/decoding in a communication link. 
(Sklar, 1988, p. 316) 



B. CONVOLUTIONAL CODES 

Convolutional codes are forward error correcting codes which take a group of k 

information or message bits, called a k-tuple, and maps it into another group of» code bits 

called an n-tuple. Each «-tuple is determined by the most recently arrived *-tuple and the 

L-l previously arrived ^-tuples. The codes are described by a fraction kin, called the rate, 

and L, called the constraint length. 

C. ENCODERS 

Figure 2.2 shows the structure of a convolutional encoder. Message bits arrive as 

^-tuples at one end of a series of L serial shift register stages, each stage holding one 

*-tuple. Each of the L ^-tuples helps determine the n-tuple. With more stages (i.e., a longer 

constraint length, L), each it-tuple influences more «-tuples, increasing the amount of 

redundancy contained in the output coded bit stream. The parallel outputs of the registers 

feed « modulo-2 adders via a bank of AND gates, the purpose of which is described in the 

h -Lk stag« - 

k 
i 2 k 1 2 * 

information 
bits 

Figure 2.2. Generic convolutional encoder. (Proakis, 1989, p. 443) 

next section. Each adder consists of an L^-input XOR tree symbolized by the circled "plus" 



sign and outputs one bit of the «-tuple. The one-bit outputs of the n modulo-2 adders are 

delivered sequentially to the modulator as a convolutionally encoded bit stream. 

Figure 2.3 shows an example of a rate 2/3 convolutional encoder with a constraint 

length L = 2. Notice the following: (1) the encoder has two stages because 1 = 2, (2) each 

stage holds two bits because k = 2, and (3) there are three modulo-2 adders because 

w = 3. 

D. CONNECTION VECTORS 

In Figures 2.2 and 2.3, a solid line or arrow between a shift register and a modulo-2 

adder represents a connection between the corresponding bits. Thus, in Figure 2.3, for 

adder number 3 there is a connection between shift register bit number 3 and adder input bit 

number 3. Similarly, there is also a connection between shift register bit number 1 and adder 

input bit number 1. The serial input end of the shift register is considered most significant. 

Figure 2.3. Rate 2/3, L = 2, convolutional encoder. (Proakis, 1989, p. 445) 



An absence of a line or arrow indicates that there is no connection. In practice, the 

connectivity between the shift register and the adders is expressed with connection vectors. 

Each adder has an Lk-bit connection vector, g, associated with it (Sklar, 1988, p. 318). A '1' 

in the /-th position of the vector represents a connection between the /-th bit of the shift 

register and the /-th bit of the adder input, whereas a '0' represents no connection. 

Connection vectors are written as octal numbers. In Figure 2.3, there are three 4-bit 

connection vectors: (1) gi = 1011, written as 138, (2) & = 1101, written as 158, and (3) gj 

= 1010, written as 128. In hardware, the contents of the shift register is bitwise ANDed with 

all of the n connection vectors. The outputs of the AND gates are then modulo-2 added 

together to arrive at a single bit of the «-tuple. Thus, each adder has Lk AND gates feeding 

its inputs. Figure 2.4 shows the hardware needed to generate one bit of the «-tuple. 

E. CODING GAIN 

Coding gain is the difference in Eb/No required to achieve the same probability of bit 

error, PB, between a coded transmission and an uncoded transmission over the same channel 

using the same modulation technique (Sklar, 1988, p. 345). Eb is the average signal energy 

per bit (Sklar, 1988, p. 156) and N0 is noise power spectral density of white noise (Sklar, 

1988, p. 345). Table 2.1 lists the required Eb/N0to achieve three different values of pB. For 

each PD it also lists the coding gain provided by various convolutional code rates and 

constraint lengths. Constraint length is denoted by K rather than L in this table. 

Significant coding gain can be achieved with a fairly simple code. For example, Table 

2.1 lists a gain of 6.2 dB when a rate 1/3, constraint length 7, code is used to achieve a 

probability of bit error of 10"7. Without coding, the required Eb/N0 to achieve the same pB 

isl 1.3 dB; whereas, with coding, the required Eb/N0 drops by 6.2 dB. This implies that the 

required transmitter power for the coded communication link is less than 25% of the 

transmitter power needed for the uncoded link to achieve the same probability of bit error. 





TABLE 2.1. CODING GAINS (dB) FOR SEVERAL BIT ERROR PROBABILITIES. 

Uncoded 
E„INo 

Code rate i i ! 1 

(dB) P* K 1 8 5 6 7 6 8 6 9 

6.8 10-' A.l 4.4 3.3 3.5 3.8 2.9 3.1 2.6 2.6 
9.6 io-J 5.7 5.9 4.3 4.6 5.1 4.2 4.6 3.6 4.2 

11.3 io-7 6.2 6.5 4.9 5.3 5.8 4.7 5.2 3.9 4.8 
Upper bound 7.0 7.3 5.4 6.0 7.0 5.2 6.7 4.8 5.7 

In a more practical sense, lower transmitter power implies smaller, lighter, cooler, more 

reliable, portable electronics packages. 

Notice the trends in the gains listed in the table. Coding gain increases for the lower 

code rates because the proportion of output coded bits to input message bits is larger. A 

higher proportion places more redundancy in the coded bit stream. Consequently, a lower 

transmitter power is adequate for the same probability of bit error, and, therefore, a higher 

coding gain is established. Similarly, within a code rate, coding gain increases with 

constraint length because longer constraint lengths imply that more ^-tuples affect each 

w-tuple. With each «-tuple determined by a larger set of ^-tuples, more redundancy is added 

to the coded bit stream. 



HL ENCODER DESIGN DETAILS 

This chapter begins the discussion of the programmable convolutional encoder design. 

First, it touches on the top-down design paradigm and then presents a list of useful features 

which a programmable encoder should have. Second, it shows how the design is partitioned 

into building blocks providing a detailed behavioral description of each block. Finally, the 

chapter uses an example code rate of 3/5 and a simplified timing diagram to describe how 

the blocks interact to produce a complete encoder. 

A. TOP-DOWN DESIGN 

The top-down approach allows the designer to simulate, debug, and evaluate different 

variations of the overall design without implementing anything in hardware. It begins with 

describing a system's behavior at a high level of abstraction without regard to any hardware 

details. As the system develops, each subsystem is broken down into a hierarchy of ever 

smaller and simpler building blocks, all of whose behavior is defined abstractly with a 

hardware description language (HDL). Hardware considerations such as target technology, 

state assignments, etc., are not important at this stage. Only the functional descriptions of 

the blocks and their interconnectivity matter. When all blocks and their interactions have 

been defined, hardware implementation of each block proceeds. 

The benefit of the approach is that designs are evaluated without bogging down in 

hardware details, and system level bugs can be discovered and fixed early in the design 

cycle. In addition, the HDL code and simulator output waveforms document the required 

behavior of the target hardware. They also provide a means of documenting upgrades to the 

system throughout the system's lifecycle. 



B. TOP-LEVEL OVERVIEW 

There are three main constraints imposed on the programmable convolutional encoder 

design: (1) it must have the ability to encode serial data streams with many combinations of 

k, n, and L, (2) its coding parameters must be adjustable via a microprocessor data bus, and 

(3) it must be implemented in a Field Programmable Gate Array. Absolute data rate is not a 

concern for the purposes of this thesis, but the implementation takes advantage of the FPGA 

architecture to enhance speed. FPGA implementation is covered in a later chapter. 

Given the first two design requirements and the structure of a generic convolutional 

encoder, the design must have, at a minimum, the following architectural features: 

1. An 8-bit data bus and a handshaking mechanism for writing code 
parameters to the device, 

2. a register file to hold code parameters, 
3. one AND/XOR tree for each connection vector, 
4. an input shift register for message bits, 
5. a special shift register to shift ^-tuples of message bits through the 

encoder, 
6. a state machine to control the incoming message bits, 
7. a state machine to control the £-tuple shift register, 
8. a state machine to control the outgoing coded bits, and 
9. a test circuit and input multiplexor. 

Figure 3.1 shows a block diagram of the design. It consists of nine sub-blocks: 

IN_ENBLE, SHIFTREG, LOADER, DATAREG, GENERATOR, SEQUENCER, TEST, 

MUX, and REGFILE. The architectural features listed above reside in the block that has a 

corresponding number in the lower left corner. 

The datapath blocks are clocked on the falling edge of the system clock, while the 

control blocks (dotted outlines) are clocked on the rising edge. Both clock edges are used 

to make the output bit rate equal to the clock frequency. If one edge was used exclusively, 

then the clock frequency would have to be doubled to get the same output bit rate. The 

10 



encoder has a global asynchronous reset, "reset", and a global clock, "elk", not shown in 

Figure 3.1. 

TEST 
.   t«t_vectM<7:0)   , 

scrialinpul, MUX 

DATA(7:0) *■ 

AS—► 
select(2:0)    / ► 

REGFILE 
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1,2 

 ►DTACK 

-/-*■ n(2:0) 
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paralleloutO 
 f ► 
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GENERATOR 

IN ENBLE < 
load 

load 

LOADER 

i mod2_sums(6:l) 

SEQUENCER serial out 

\ 
k(2:0) 

i 
n(2:0) 

Figure 3.1. Block diagram of the convolutional encoder. 

Because of their serial nature, convolutional encoders lend themselves well to a pipeline 

architecture that allows the encoder to input message bits, convert them to code bits, and 

output them simultaneously. The idea behind pipelining is to have several independent 

stages working on different sets of data concurrently. The output of one stage becomes the 

input to the next stage. In this convolutional encoder design, serial message bits move 

through the SHIFTREG block and land in the DATAREG block while the SEQUENCER 

block sends code bits from the GENERATOR block to the "serial_out" port. Detailed 

descriptions of these blocks appear later in this chapter. 

C. DATAPATH 

The datapath consists of the blocks SHIFTREG, DATAREG, and GENERATOR. 

Refer to Figure 3.1. Although SEQUENCER is considered a control block, it does serve a 

datapath function because it acts like a multiplexor that selects bits from "mod2_sums(6:l)". 

11 



The details of SEQUENCER are presented in a later section. 

In a nutshell, the datapath operates as follows. SHIFTREG, a serial to parallel shift 

register latches k serial message bits. At the appropriate time, these message bits are placed 

into DATAREG in parallel where they become part of Mk_vect(7:0)H, the DATAREG 

output. GENERATOR combines "k_vect(7:0)H with six connection vectors and delivers six 

bits in parallel, "mod2_sums(6:l),,
) to SEQUENCER. Based on the value of Hn(2:0)", 

SEQUENCER selects the appropriate bits and sends them serially to the output, 

"serial_out". What follows detailed behavioral description of each datapath block. 

1. MUX 

The MUX block is a 2-to-l multiplexor which selects either "serial_input" or a test 

pattern to be the serial input of SHIFTREG. Its selection control signal is "test" which is 

one bit of one of the registers in REGFILE. When "test" is high, the test pattern is fed into 

SHIFTREG; otherwise, "serialjnput" is fed into SHIFTREG. 

2. SHIFTREG 

This block is an ordinary 4-bit serial-in/parallel-out shift register. Its inputs are 

"serialjnput", "reset", "en", and "elk". Message bits enter the convolutional encoder 

through "serialjnput". "En" enables SHIFTREG long enough to shift a #-tuple of message 

bits. SHIFTREG's outputs, "parallel_out[4..1]", are simply the parallel version of the serial 

input, and they feed the four parallel inputs of DATAREG. 

3. DATAREG 

The DATAREG block is a specialized 8-bit shift register which loads and shifts its 

input in ^-tuples. In effect, the contents shift by one *-tuple with a single clock edge. For 

example, if k = 2, then bits 4 and 5 shift two places to become bits 6 and 7, 2 and 3 become 

4 and 5, 0 and 1 become 2 and 3, and the next two input bits become bits 0 and 1. 

DATAREGs inputs are "load", Hk(2:0)", "elk", "reset", and "in(7:4)", and its output is 

12 



"k_vect(7:0)". "K(2:0)" is a binary number representing the number of bits per £-tuple. 

"In(7:4)" are the outputs from SHIFTREG. In the block diagram, "in(7:4)" is shown as 

"parallel_outO" because two different port names were used for the same signals as VHDL 

source code was developed. Ideally, only one name should be used. HK_vect(7:0)" is the 

8-bit contents of DATAREG, which, along with the connection vectors of the 

GENERATOR block, determines the coded bits in "mod2_sums(6:l)M. 

4. GENERATOR 

GENERATOR is the only combinational logic block of the encoder design. It 

calculates the "mod2_sums(6:l)" vector which determines the output code sequence. 

GENERATOR'S inputs are the six connection vectors, "gl" through Hg6" and "k_yect(7:0)" 

from DATAREG. It logical ANDs each of the six connection vectors with "k_vect(7:0)H 

and modulo-2 adds (XORs) the elements of each resulting vector to produce the 

"mod2_sums(6:l)" vector for the SEQUENCER block. Note that the constraint length, L, is 

inherent in the choice of generator vectors. Because they are eight bits wide, they can 

provide a constraint length of 8 or less for k = 1, 4 or less for k = 2, and 1 or 2 for either 

* = 3or* = 4. 

5. REGFILE 

This block is a register file with eight 8-bit registers and a state machine, 

HANDSHAK, that provides the handshaking mechanism. Six of the registers, register 1 

through register 6, hold the six connection vectors. Register 0 holds "k(2:0)" in bits 2 

through 0, "n(2:0)" in bits 5 through 3, and the "test" control bit in bit 6. Each register 

enable comes from a 3-to-8 decoder output which is the decoded equivalent of the 3-bit 

"select(2:0)" bus. The address strobe, AS, uses the enable input on the decoder to allow one 

of the eight decoder outputs to select the target register. 

The handshaking mechanism is controlled by HANDSHAK, a Moore machine 
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clocked on the rising edge of the system clock. The state diagram is shown in 

Figure 3.2. When AS is asserted (low) by the microprocessor, the state machine output 

ASout goes high for one clock cycle, enabling the target register for writing. The register 

!AS 

igure 3.2. State diagram for HANDSHAK. 

latches the data on the falling clock edge after which the DTACK signal asserts low and 

stays there until AS is inactive (high). The handshaking mechanism is patterned after the 

68000 family of microprocessors (Clements, 1992, p. 181). 

D. CONTROL 

The control blocks consist of IN_ENBLE, LOADER, and SEQUENCER. LOADER 

produces the active low signal "load". It divides the clock by n and provides a low pulse 

every n clock periods. When "load" is active, it allows DATAREG to take in another 

*-tuple from SHIFTREG. It also gives the IN_ENBLE block a synchronization signal. 

IN_ENBLE's sole function is to enable SHIFTREG with "en", which stays high long enough 

for SHIFTREG to input one yt-tuple. "En" is active high. SEQUENCER selects the lowest 

significant n bits from "mod2_sums(6:l)" and sends them to "serial_out", the output of the 

convolutional encoder. Meanwhile, IN_ENBLE allows the entry into SHIFTREG of the k- 

tuple that Will produce the next «-tuple. When "load" activates again, the new *-tuple is 
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loaded into DATAREG and new values of the "mod2_sums(6:l)" vector appear at 

SEQUENCER'S input. 

1.  LOADER 

LOADER is a Moore machine which divides the system clock by n and provides the 

"load" signal to DATAREG and INENBLE. Its inputs are "n(2:0)H, "elk", and "reset". 

"N(2:0)H is the binary representation of the number of code bits sent in one «-tuple. It can 

have a value from two through six. The unused values n = 0 and n = 1 default to n = 2, and 

the unused value n = 7 defaults to n = 6. "Load" enables the parallel loading function of 

DATAREG every n clock cycles. This block must divide the system clock by n because the 

input bit rate must be multiplied by n to account for the extra bits added to the bit stream in 

the coding process. Since the output bit rate is fixed at the system clock rate, dividing the 

Figure 3.3. State diagram for LOADER block. 

clock by n and loading the input bit groups at the divided rate achieves the same result. This 
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approach also eliminates the need for a phase-locked loop clock multiplier for the output bit 

stream, allowing the design to reside in an FPGA. 

Figure 3.3 shows the state diagram. The machine resets to si. The output, "load", is 

high (inactive) in all states except si. After n clock transitions, it ends up in si with "load" 

active. For instance, assume the machine is in si and n = 4. After every fourth rising clock 

edge, LOADER will be in si forcing "load" low. Effectively, LOADER divides the clock 

rate by four. 

2.  IN_ENBLE 

This block is a Moore machine which counts the number of clock cycles necessary 

to keep "en" high long enough for SHIFTREG to input k message bits (one £-tuple). 

IN_ENBLE takes the signals "elk", "load", "reset", and "k(2:0)" as inputs. K can have only 

four values and could have been encoded in two bits. However, using the 3-bit binary 

representation for the values of k is less confusing for the user of the encoder and has little 

cost impact on the overall design. This approach also leaves a bit in place to accommodate 

future enhancements to the encoder design which could handle more than four message bits. 

The unused value of k = 0 defaults to k = 1, and the unused values k > 4 default to k = 4. 

"Load" is the output of LOADER. INJBNBLE uses this signal to synchronize its activity 

with LOADER. 

As the state diagram, Figure 3.4, shows, IN_ENBLE stays in state sO with "en" 

inactive until the "load" signal is active (low). This feature guarantees that IN_ENBLE 

allows SHIFTREG to begin taking new input immediately after "load" latches a *-tuple into 

DATAREG Once "load" is active, INJENBLE activates "en" for k clock cycles. Within 

these k cycles are k falling clock edges that SHIFTREG uses to latch k message bits. 
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Figure 3.4. State diagram for IN_ENBLE block. 

3.   SEQUENCER 

The SEQUENCER block is a Mealy machine that traverses through n states 

selecting bits from "mod2_sums(6:l)" for output from the convolutional encoder. 

"mod2_sums(6:l)" is the vector containing the six modulo-2 sums resulting from the 

GENERATOR block. The block's other inputs are "n(2:0)", "reset", "load", and "elk". 

"n(2:0)H is a binary number representing the number of code bits in one w-tuple. 

Figure 3.5 shows the SEQUENCER state diagram. It selects the output bits in order 

from low index to high index. Thus, if n = 3, the state machine will traverse through states 

si, s2, and s3 repeatedly, selecting the correspondingly indexed bit from the 

Hmod2_sums(6:l)" vector. In this case, it would select "mod2_sums(l)", "mod2_sums(2)", 

and "mod2_sums(3)". As in the LOADER block, the unused values n = 0 and n = 1 default 

to  n = 2, and the unused value n = 7 defaults ton = 6. 
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Figure 3.5. State diagram for SEQUENCER block. 
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4.   TEST 

The TEST block consists of an 8-to-l multiplexor whose selection and enable bits 

are controlled by a 4-bit binary counter. The counter cycles through the eight inputs of the 

multiplexor on its first eight of sixteen state transitions. It forces the multiplexor output to 

zero during the second eight transitions, filling SHIFTREG with zeros. This is needed to 

obtain the correct output sequence that corresponds to the input test pattern. The eight 

inputs to the multiplexor come from *'test_vector(7:0)" which is the test pattern stored in 

register 7 of REGFILE. 

E. OPERATION 

Figure 3.6 shows a simplified timing diagram to clarify the operation of the encoder. The 

vertical lines lettered A through J correspond to each step the encoder executes as it inputs 
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a Jt-tuple and simultaneously outputs an «-tuple. For this example, the encoder is set up for 

a 3/5 code, and the *-tuple entering the encoder is "101". The MSB enters first. At the start 

of the example, the contents of DATAREG and SHIFTREG are all 'x*s representing ^-tuples 

which have not yet completed their journey through the encoder. This example looks at the 

operation of the encoder in midstream. 

Figure 3.6. Simplified timing diagram for the convolutional encoder set up for a 3/5 code 

A. DATAREG is disabled ("load" is high), SHIFTREG is enabled ("en" is 
high), and all state machines advance 1 state. The contents of DATAREG 
and SHIFTREG are all 'x's (previous bit arrivals). 
B. SHIFTREG latches the 1st bit of the *-tuple (T), SEQUENCER 
outputs the 1st bit of the previous «-tuple (mod2_sums(l)). The contents 
of SHIFTREG is now "lxxx". 
C. All state machines advance 1 state. 
D. SHIFTREG latches the 2nd bit of the Jt-tuple ('0'), SEQUENCER 
outputs the 2nd bit of the previous «-tuple (mod2_sums(2)). The contents 
of SHIFTREG is now "Olxx". 
E. All state machines advance 1 state. 
F. SHIFTREG latches the 3rd and final bit of the *-tuple (T), 
SEQUENCER outputs the 3rd bit of the previous «-tuple (mod2_sums(3)). 
The contents of SHIFTREG is now "lOlx". 
G. SHIFTREG is disabled ("en" is low), all state machines advance 1 state. 
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H. SEQUENCER outputs the 4th bit of the previous «-tuple 
(mod2_sums(4)). The contents of SHIFTREG does not changed. 
L DATAREG is enabled ("load" is low), all state machines except 
IN_ENBLE advance 1 state; IN_ENBLE remains in state sO waiting for 
"load" to go high for synchronization of its actions with those of 
LOADER. 
J. DATAREG loads the *-tuple ("101") from SHIFTREG. It now 
contains "lOlxxxxx". The new value in DATAREG causes 
Hmod2_sums(6:l)" to change. SEQUENCER outputs the 5th and final 
code bit from the previous value of mod2_sums(5), completing the output 
of the previous w-tuple. The encoder goes back to step A where it begins 
outputting the new w-tuple consisting of the lowest significant five bits of 
the new value of "mod2_sums(6:l)H. It also begins inputting a new £-tuple. 

F. INTERFACE 

The device will need the following pin functions to interface with any external system in 

which it is a component: 

1. system clock, "elk", (input pin), 
2. global reset, "reset", (input pin), 
3. an input port for serial message bits, "serialjnput", (input pin), 
4. an output port for serial code bits, "serial_out", (output pin), 
5. 8-bit port for the data bus, "data(7:0)H, (input pins), 
6. address strobe, "AS", used in handshaking (input pin), 
7. data transfer acknowledge, "DTACK", for handshaking, (output pin), 
8. "en" and "load" for coordinating message input/code output, (output pins) 
9. miscellaneous ports for testing/monitoring intermediate signals (output pins). 

The user must feed message bits to the encoder in serial bursts so that k bits are 

available when "en" is high. Therefore, the user should use "en" as a synchronizing input to 

whatever circuitry precedes the convolutional encoder. An asynchronous I/O First-In-First- 

Out (FIFO) memory would be the most appropriate structure to hold incoming message bits 

because it would accept incoming message bits at a constant rate while the encoder removes 

them in bursts of one *-tuple while "en" is active. For a one-chip solution, a register based 

FIFO could be implemented in the FPGA along with the encoder design. Thus the input bit 
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stream would be decoupled from the encoder input, and the buffering of message bits would 

not be the user's worry. 

In addition to "en", the signal "load" is also provided as an output for the user to utilize 

as necessary for interfacing. For troubleshooting purposes, "k_vect(7:0)H and 

"mod2_sums(6:l)H should also be brought to output pins. These pins can be eliminated after 

the system is fully tested. 

The next chapter deals with VHDL and high level simulation to confirm the correct 

operation of the programmable convolution^ encoder before hardware implementation 

begins. 
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IV. VHDL AND SIMULATION 

This chapter briefly discusses the VHSIC Hardware Description Language (VHDL) and 

how it was used to simulate and verify the proper behavior of the encoder design. A few 

aspects of VHDL dealing with hardware implications of the code and a stimulus block are 

described. A method to determine correct coded bit sequences is also discussed. 

A. VHDL 

VHDL is the IEEE and DOD standard for defining system behavior. It has several 

advantages in support of top-down design. Since it is a standard HDL, it provides a reliable 

communication medium for transferring design information and specifications between and 

within design groups. Also, different groups do not need to use the same CAD suite as long 

as their CAD environment supports VHDL simulation. It is not limited to descriptions of 

one particular technology, and its wide range of descriptive capability allows one to write 

accurate models both at the subsystem level and at the gate level. Thus, models of 

subsystems written on different levels of abstraction can coexist in the same simulation of a 

system under development. As more detailed models are completed, they can be verified 

simply by plugging them into the overall system model and resimulating (Lipsett,1989, p.3). 

No module of the system must be completed before another module can be inserted and 

debugged because the abstract behavioral models substitute for modules whose hardware 

details are not yet available. The schematic diagram and VHDL files for the encoder are in 

Appendix A. 

Presenting VHDL in any detail is beyond the scope of this thesis. Therefore, it is 

assumed that the reader has a basic understanding of the various description styles and 

syntactical constructs of the language. Of these, only a few are used in the convolutional 

encoder model, and they are presented along with their hardware embodiments.  Keep in 
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mind that even though a translation is made from VHDL code to a conceptual hardware 

block, the actual hardware details are still immaterial at this stage in the design cycle. 

Behavioral description is the only concern. For the interested reader, two good VHDL texts 

are listed in the List of References. One is Lee, 1992, and the other is Lipsett, 1989. 

1.   Constructs 

Of the three styles of architectures used in VHDL descriptions, the behavioral and 

dataflow constructs were the only two used. The structural style is most conveniently used 

at the top level of the design hierarchy. Since this style is basically the text form of a 

schematic diagram, an actual schematic diagram was chosen as the top level documentation 

of the encoder design. This approach provides the designer with a convenient graphical 

format of the design and nicely compliments the trace window of the Mentor Graphics 

Quicksimll simulator. With the schematic in view inside the Quicksimll environment, 

graphical blocks can be opened to gain access to internal signals for simulation while 

keeping the top level schematic in view. Schematic diagrams also make it easier for people 

unfamiliar with the design to see the overall structure and data flow. 

a.  State Machines 

There are two ways to model a state machine in VHDL. The first is to use one 

process and define every state and output transition within that process. The second, which 

is the one chosen for the convolutional encoder model, is to separate the state transitions 

and outputs into two different processes referred to here as the "state" process and the 

"output" process. The state process has the clock and reset in the sensitivity list and defines 

only state transitions. The output process is either a concurrent selective signal assignment 

statement with the state as the selecting signal, or it is a concurrent PROCESS statement 

having only the state in the sensitivity list. This structure works well for both Mealy and 

Moore machines. The only difference is that the Mealy machine has signals as 
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Listing 4.1. Excerpt from SEQUENCER state machine source code (Appendix A). 
s:PROCESS(clk, reset) 
BEGIN 

IF (reset = '0') THEN -- asynchronous reset. 
state <= state_0; 

ELSIF (clkEVENT AND elk = T) THEN - state machine transitions on 
CASE state IS -- rising clock edge. 

WHEN state_0 => ~ go to state_l regardless of the inputs. 
state <=state_l; 

WHEN state_l => ~ go to state_2 regardless of the inputs. 
state <= state_2; 

WHEN state_2 => 
IF (n = "000" OR n = "001" OR n = "010") THEN 

- if n is less than or equal to 2, 
state <= state_l; - go to state_l. 

ELSE 
state <= state_3; ~ more than 2 bits/n-tuple. 

END IF; 
WHEN state 3 =>    

inputs to the selective signal assignment or PROCESS statement's sensitivity list, whereas 

the Moore machine has constant literal values. Listing 4.1 is an excerpt from the state 

process of the SEQUENCER block. The state transitions are a function only of n(2:0), and 

a state transition is triggered only on a rising clock edge or an asynchronous reset. The 

complete VHDL source code for the SEQUENCER block and the other blocks is in 

Appendix A. Additionally, the VHDL code was written based upon the state diagrams 

described in the previous chapter. Refer to them if necessary to trace through the VHDL 

code. 

b.  Multiplexors 

Listing 4.2 is an excerpt from the output process of the SEQUENCER block. As 

mentioned above, it describes the output signal transitions of the SEQUENCER state 
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machine, and it also serves as a multiplexor example. This VHDL construct is a selective 

signal assignment, similar to the sequential CASE statement. It is a concurrent process 

Listing 4.2. Excerpt from SEQUENCER source code (Appendix A). 
-- mux structure that uses state flip-flops to select bits of "mod2_sums" for output 

WITH state SELECT 
serial<= mod2_sums(l) WHEN statej, 

mod2_sums(2) WHEN state_2, 
mod2_sums(3) WHEN statej, 
mod2_sums(4) WHEN state_4, 
mod2_sums(5) WHEN state_5, 
mod2_sums(6) WHEN state_6, 
'0' WHEN stateO;  

executing in the same simulation time as all other concurrent statements and concurrent 

PROCESS statements. The hardware representation is a multiplexor with the signal "state" 

determining which input signal is assigned to the signal "serial". Thus, "state" is the 

selection input, "mod2_sums(6:l)" are the inputs, and "serial" is the output. 

c   Implicit Storage Elements 

Listing 4.3 shows a portion of the DATAREG source code describing an 

implicit storage register with a load enable and an asynchronous reset. Earlier in the code 

Listing 4.3. Excerpt from DATAREG showing implicit storage register (Appendix A).  
PROCESS (elk, reset) 
BEGIN 

IF (reset = '0') THEN - asynchronous clear 
q <= "00000000"; 

ELSIF (clkEVENT AND elk = '0') THEN -- clock on falling edge. 
.    IF (load ='0') THEN - Q outputs get D inputs 

q <= d; - only if "load" input is low. 
END IF;' 

ELSE 
END IF; 

END PROCESS; .  
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(see Appendix A), BITJVECTORs "dO" and "qO" were declared. The value of "dO" is 

assigned to "qO" only when the load enable signal is low and the clock is on a falling edge. 

If "reset" goes low then "qO" is assigned zeros regardless of the clock, "dO" or "load". The 

code describes an implicit storage register because if the conditional statements do not 

evaluate to true, "qO" is not assigned the value of "dO". Thus, it is implied that "qO" retains 

its old value and therefore is "stored". No component with specific ports is explicitly 

instantiated, yet the behavior is that of a register. Storage is implied any time an assignment 

statement is used inside a synchronization construct, which uses the 'EVENT attribute in the 

conditional part of an IF...THEN...ELSIF statement. Storage is also implied for assignment 

statements inside an incompletely specified conditional assignment statement (that is, an 

IF...THEN with no ELSE). Looking back at Listing 4.1, implied storage is an inherent part 

of state machines. (Harr, 1991, p. 149). 

B. SIMULATION 

The simulation procedure was quite simple. All the polynomials representing the k and g 

vectors were multiplied together as described above to obtain the rows of Table 1. Then 

simulations were run in the Quicksimll environment using all appropriate combinations of A: 

and n (n > k) in the STIMULUS block. The resulting "serial_out" waveforms in the Trace 

window were checked against the code sequences derived from Table 1. Figures 1 through 

4 depict the output from the simulator for rates 2/3, 1/6, 1/2, and 3/5, respectively. The 

"serial_out" waveforms were used as the standard against which the FPGA implementation 

was checked. 

- Table 1 shows the code bits used to verify the simulation outputs. It contains the code 

bits for any code working on the test message pattern "1001110101" with connection 

vectors g, = 2158, & = 2518, gj = 2428, g4 = 2368, gs = 2238 and & = 2758 and an 8-bit 

DATAREG. Each row comes from the product of the polynomial representations of k and 
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one of the connection vectors, g. Note that polynomials representing bit vectors are found 

by associating a power of X, starting with X°, with each bit position. With the bit positions 

numbered 0 through 7 from left to right, the bit position becomes the exponent in the 

corresponding polynomial term if the bit is a T. If the bit is a '0', no term appears in the 

polynomial. To arrive at row kg!, the polynomial (1+X3+X4+X5+X7+X9), representing the 

test message pattern, is multiplied by (l+X^X'+X7), representing the connection vector gi. 

Remembering that the partial products are modulo-2 added, the product is 

(1+X3+X7+X9+X13+X16), which is the polynomial representing row kg». 

TABLE A .1. CODE BIT PATTERNS FOR TEST MESSAGE PATTERN "1001110101" 
'—'—"—■- k MULTIPLES 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

kg, 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 

kg2 1 0 1 1 0 0 1 0 1 1 1 1 1 1 0 1 

kg3 1 0 1 1 1 0 0 0 0 1 0 0 1 0 1 0 

kg4 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 

kg5 1 0 0 0 1 1 0 1 1 0 0 0 1 1 1 1 

kg6 1 0 1 0 0 1 0 1 1 0 1 1 1 1 0 0 1 

The output code bit sequence of any code rate kin is found by entering the table at 

column number k, reading down the column n rows, then repeating this procedure in 

columns 2k, 3k, and so on. Thus, for a rate 3/5 code, the first five code bits, "01100", are 

found in column 3, the second five, "00001", are found in column 6, and so on. The 3/5 

code generates the pattern "01100 00001 01011 01000 01011". The 2/3 code generates 

"000 111 000 100 111 010 111 001". 

C. STIMULUS 

The STIMULUS block provides a serial test message pattern to the encoder. During 

development the test pattern was "1001110101 0000000" with the leftmost bit transmitted 

first. The trailing zeros are necessary to flush DATAREG. Since all of the bits in 
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DATAREG affect the output code bits, the coded stream is not complete until the last '1' 

has transited completely through the register. STIMULUS is written to repeatedly transmit 

the test message forever. 

One of the great advantages of VHDL is that both the design and the test code is 

written in the same language. Therefore, the test block is thought of as just another 

hardware model with inputs and outputs. Thus, the design under test can provide inputs to 

the test block and the test block can respond with different test outputs as appropriate. In 

this case, STIMULUS takes as an input the signal "en" from the "IN_ENBLE" block. 

Recall that "en" allows k message bits into the encoder. STIMULUS provides input only as 

long as "en" is high, just as an actual system would behave if the encoder design was a 

component of the system. This block could have been written to have more of the behavior 

of the parent system, such as the ability to load REGFILE with code parameters, but the 

simulation emphasis was on checking that the convolutional encoding was correct. The 

VHDL code for STIMULUS was purposely kept quite simple to minimize debugging. A 

STIMULUS block with bugs obviously would cause incorrect results from the circuit under 

test. 

Most of the STIMULUS code simply makes sure that the first bit of the test message is 

not sent in the same high "en" pulse as the final bit. When the final bit of the test pattern is 

sent, a flag is set. As long as the "en" pulse is active, the flag prevents STIMULUS from 

starting over at the beginning of the test pattern until a new "en" pulse has arrived. This 

guarantees that the first bit of the test message pattern is always the first bit sent within an 

active "en" pulse. For simulation purposes, this scheme synchronizes the test pattern to the 

encoder operation so that the beginnings of the repeated test patterns could be easily 

located in the QuickSimll output waveforms. 
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This chapter concludes the discussions on the high level behavioral design and 

simulation of the programmable convolution^ encoder. The next chapter is the first of 

several that deal with specific hardware details associated with Field Programmable Gate 

Arrays (FPGAs) and how to translate the behavior covered above into hardware. 
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V. FIELD-PROGRAMMABLE GATE ARRAYS 

This chapter describes FPGAs and the types that are available. Because it is important 

to have a detailed knowledge of the target FPGA architecture to get best performance, this 

chapter also provides a very detailed description of the line of FPGA made by Xilinx, Inc., 

called the Logic Cell Array (LCA). The Xilinx XC3064 LCA was used to implement the 

programmable convolutional encoder design. 

A. INTRODUCTION 

Field Programmable Gate arrays are standard, off-the-shelf VLSI devices whose 

functionality the user defines. They consist of a pattern of logic blocks surrounded by 

interconnection paths. There are four types available, shown in Figure 5.1. 
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Figure 5.1. The four types of FPGA (Brown, 1992, p. 14) 

Each logic block contains combinational circuitry such as multiplexors, look-up tables, or a 

PLD that the user programs to implement Boolean functions. The blocks also have flip- 

flops which can store either the output of the Boolean function or other signals routed into 

30 



the block but bypassing the logic structures. The interconnection resources consist of metal 

segments and programmable switches which route signals between the logic blocks. Each 

block implements a small piece of the overall design, and the interconnection resources 

connect all the pieces together into a complete digital design. The designer uses CAD 

software to generate a binary file from a schematic diagram or from a hardware description 

language and then downloads the file to the FPGA to configure the logic blocks and 

interconnection resources. 

Because FPGAs can implement large digital circuits on a single chip, they offer huge 

advantages in system size, power consumption, and speed over systems built with SSI and 

MSI technology. They are commonplace in today's new electronic systems implementing 

random logic and application-specific functions. Most types are reprogrammable. This 

feature makes FPGAs ideal for prototyping new systems and for changing the structure of 

an existing system in the field. 

The two most important benefits to using these devices are, first, convenience, and 

second, low cost. FPGAs provide inexpensive, instantly verifiable prototypes of complex 

digital circuits. As a system develops, the user can repeatedly change the design by 

downloading a new configuration program into the device. Not all FPGAs are 

reprogrammable, however. Some types, referred to as "one time programmable", are 

permanent once programmed and must be discarded if changes become necessary. The 

Xilinx device used in this thesis uses static RAM technology to set up the logic blocks and 

switching resources, and the user can reprogram it an unlimited number of times. 

- The second major benefit is low cost. Other avenues to custom or semi-custom VLSI 

devices involve high non-recurring engineering (NRE) costs that are associated with tooling 

a commercial foundry to produce a device with the desired functionality. One such device is 

the Mask-Programmable Gate Array (MPGA). This device consists of rows and columns of 
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transistors that are connected according to the user's specifications. However, the foundry 

must produce the metal mask layers and deposit the metal interconnect onto the die. This is 

costly. These costs are usually in the tens of thousands of dollars and occur only once 

during production of the design. This cost translates to a per unit cost much higher than that 

of an FPGA for volumes less than about 1000 units (Brown, p. 4). Consequently, for low 

volume systems, FPGAs are used in the final systems as well as in the prototypes. 

Despite the low cost and convenience offered by FPGAs, they have some limitations. 

The programmable switches in the routing paths introduce extra resistance and capacitance 

which would not be present in a custom chip. The additional RC time constants slow the 

signals traveling between the logic blocks causing FPGA designs to be significantly slower 

(up to several times slower (Brown, p. 6)) than other VLSI implementations. Another 

limitation is lower logic density. The programming circuitry and switches that give FPGAs 

their programmable nature occupy space on the die which otherwise would be dedicated to 

the design itself. FPGAs can be 8 to 12 times less dense than MPGAs manufactured in the 

same fabrication process (Brown, p. 6). 

A consequence, but not necessarily a limitation, of the FPGA architecture is that special 

design techniques must be used to squeeze all of the available performance out of these 

devices. The typical academic procedure for designing state machines with states encoded 

as a binary sequence, for example, often is not the best approach. FPGA architectures tend 

to have a high proportion of flip-flops compared to the combinational circuitry that feeds 

the flip-flop inputs. Consequently, highly encoded state machines such as binary counters 

can require several logic blocks worth of next state decoding logic. Effectively, these types 

of state machines require logic blocks in series, and their performance suffers from the 

added propagation delay introduced by the extra interconnect. The problem can be avoided 

by using a different state encoding technique that uses more flip-flops. Using more flip-flops 
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tends to decrease the complexity of the next state decoding circuitry, reducing the number 

of logic blocks and the combinational delays. Design techniques which take advantage of 

one-hot state encoding and shift register structures like Linear Feedback Shift Registers 

(LFSRs), Johnson counters, and ring counters are well suited to FPGA architectures 

because they require relatively little combinational circuitry. (Knapp, Klein) 

B. XILINX XC3064 ARCHITECTURE 

The FPGA used for the convolutional encoder design is the XC3064 from Xilinx, Inc. 

Figure 5.2 shows the general structure of all Xilinx FPGAs, which Xilinx calls Logic Cell 

Arrays (LCA). The XC3064 consists of an 16 x 14 matrix' of 224 Configurable Logic 

Blocks (CLBs) surrounded by 120 Input/Output Blocks (IOBs). The CLBs implement the 

logic design, and the IOBs provide an interface between the design and the package pins. 

Programmable interconnection channels run horizontally and vertically between the CLBs 

and around the CLB matrix. Static RAM cells control the programmable functions of the 

LCA. 
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Figure 5.2. Xilinx LCA structure (Brown, 1992, p.22) 
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1.  Configurable Logic Block 

Figure 5.3 shows a CLB. Each CLB contains a 5-input look-up table (LUT), two 

flip-flops, and multiplexors to route signals between the flip-flops, the LUT, and the CLB 

inputs and outputs. 

a. Multiplexors 

The CLB contains two types of multiplexors. The first type is denoted by the 

traditional rectangular multiplexor symbol with the control line entering the bottom. It can 

either route the Q flip-flop output back to the D input, disabling the flip-flop, or it can route 

the F, G, or DATA IN (IN) signals to the D input. Its control line is either of the inputs 

ENABLE CLOCK (EC) or (ENABLE). Each flip-flop D input is fed by one of these 

multiplexors. 

The second type of multiplexor is denoted by the trapezoidal symbol without a 

control line. This type controls the configuration of the CLB. The selection signals for these 

multiplexors come from static RAM cells that hold bits of the configuration program 

downloaded by the user. Since these bits do not change after the configuration program has 

been downloaded, the control lines are not shown. Two multiplexors select which signal 

feeds the D input of the flip-flops (F, G, DIN), and two more configure the X and Y CLB 

outputs as registered or combinational. The remaining three select the clock line (inverted 

or noninverted), the clock enable line (ENABLE CLOCK or (ENABLE)), and the effect of 

the reset line entering the CLB from the routing channels (DIRECT RESET or (INHIBIT)). 

b. Look-up Table 

The LUT has five inputs and two outputs. It is a 32x1 table which can 

implement one function of five variables or two functions of four variables. There are seven 

physical inputs to the LUT: CLB inputs A, B, C, D, E, and feedback signals QX and QY. 

However, a maximum of five of these seven are used to implement Boolean functions. For a 
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5-variable function, three are A, D, and E. The fourth is any one of B, QX, or QY, while 

the fifth variable is any one of C, QX, or QY. In this case, the LUT outputs, F and G, are 

identical. See Figure 5.4b. 
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Figure 5.3. Configurable Logic Block (Xilinx, 1994, p.2-109) 

Similarly, the inputs to the two 4-variable functions are groupings of the seven 

physical inputs. One variable is A which must be common to both functions. For both 

functions one input is either B, QX, or QY, and another input is either C, QX, or QY. The 

fourth is either D or E. The outputs F and G are independent. See Figure 5.4a. 

35 



Some 6- and 7-variable functions can be implemented, but because of the 

physical structure of the LCA, these functions must be in the form: 

F = f,(A,L,M,D)-!E + f2(A,L,M,D)'E 

where E is the select input of a 2-to-l multiplexor (the exclamation point implies Boolean 

negation), fi and f2 are two 4-variable functions feeding the data inputs of the multiplexor, 

and L and M can each be B, C, QX, or QY. A further constraint is that at least two of the 

inputs to fi and f2 (inputs A and D) must be common to both functions. As with the five- 

variable case, LUT outputs F and G are identical. See Figure 5.4c. 

c.   Storage Elements 

Each CLB contains two D-type flip-flops. User-programmed multiplexors, 

mentioned above, select the source of each D-input from either the flip-flop's own Q output, 

the F or G LUT outputs, or the DATA IN (DI) input which bypasses the LUT. If the CLB 

is configured for registered outputs, one Q-output becomes the X CLB output, and the 

other becomes the Y CLB output. The Q-outputs also go to the QX and QY inputs of the 

LUT. The flip-flops are clocked by the invertible CLOCK (K) input, and they are 

asynchronously reset by either DIRECT RESET (RD) or GLOBAL RESET. 

2.   Input/Output Block 

The IOBs surround the 8-by-8 array of CLBs and provide an interface to the 

package pins. Each pin can be used as an input to the device or as an output. Figure 5.5 

shows an IOB. Each block contains an output D-type flip-flop that can provide a registered 

signal to a pin configured as an output pin. In addition, the IOBs have an input storage 

element which can be set up as either a D-type flip-flop or as a D-type latch to store signals 

from pins configured as inputs. The asynchronous resets of both storage elements connect 

to the LCA's global reset line, GLOBAL RESET. Their clock inputs connect to either of 
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Figure 5.4. Look-up Table Usage (Xilinx, 1994, p. 2-110) 
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two clock lines, CK1 and CK2, which lie on the edges of the LCA die. Each clock is 

invertible for the die as a whole, but not for any individual storage element. 
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'igure 5.5. Input/Output Block (Xilinx, 1994, p.2-107) 

If a particular I/O pin functions as an output, its signal, OUT (O), comes through a 

programmable 3-state output buffer from a 2-to-l multiplexor which selects the registered 

or combinational version of the signal. An XOR gate, one of whose inputs connects to a 

program-controlled memory cell, can invert the signal before it arrives at the flip-flop. The 

active logic level of the buffer control, 3-STATE (T), is invertible in a similar manner. 
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When an I/O pin is an input, the signal passes through an input buffer whose input 

thresholds are programmed for TTL or CMOS levels. This is a global feature of the die, not 

a block-by-block programmable feature. The signal then feeds the input storage element for 

latched inputs, REGISTERED IN (Q), and for combinational inputs, DIRECT IN (I), 

bypasses the element for direct input to the interconnection resources. 

3. Configuration Memory 

The control of the multiplexors, XOR gates, 3-state output buffer, and pull-ups, and 

switching resources comes from a configuration program which loads from external 

memory into the LCA on power-up or on the user's command. The program loads an array 

of static memory cells that are distributed throughout the LCA. The outputs of these cells 

configure all of the programmable features. 

4. Programmable Interconnect 

The programmable interconnect resources consist of three types of interconnection 

between CLBs and IOBs: (1) General Purpose, (2) Direct, and (3) Longlines. These 

structures connect the blocks on the LCA to implement the user's digital design. 

a. General Purpose Interconnect 

Five general purpose interconnect metal lines run the length and width of each 

CLB or IOB. At each corner, a switching matrix provides the interConnectivity between the 

four sets of five lines meeting at that particular junction. Each line can connect to between 

four and six other lines, depending on which line carries the input signal. Figure 5.6 shows 

the various configurations of a switching matrix. 

b. Direct Interconnect 

Direct interconnection allows CLBs to connect their outputs directly to 

neighboring CLBs or IOBs, bypassing the general interconnect switching matrices and lines. 

This method presents the least delay to signals traveling between adjacent blocks. The X 
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CLB output can connect to the B input of the CLB to its right and to the C input of the one 

to its left. The Y CLB output can connect to the D input of the CLB above and to the A 

input of the CLB below. The CLBs neighboring IOBs connect to the two closest IOBs. One 

CLB output goes to one IOB, and one input comes from the other IOB. 

Figure 5.6. Switching Matrix Configurations 
(Xilinx, 1994, p. 2-113) 

c   Longlines 

Longlines run the width and height of the interconnect area, bypassing the 

general interconnect switching matrices. Every column of the interconnect area has three 

longlines and every row has two. Two more run along the outer sets of switching matrices. 

Longlines carry signals which must travel a long distance or which require minimal skew. 

The next chapter covers design methods that optimizes hardware performance by taking 

advantage of some of the characteristics of the FPGA architecture. 
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VL STATE ASSIGNMENT 

Using the SEQUENCER block as an example, this chapter compares the one-hot state 

assignment technique to the standard binary state assignment technique. It also describes 

how to use redundant states to help take advantage of the LUT based architecture of the 

Xilinx LC A. 

A. ONE-HOT vs. BINARY 

One-hot state assignment is a scheme whereby each state in a state machine is 

represented by one and only one active flip-flop. There are at least as many flip-flops in the 

state machine as there are states. Because each state is represented by only one flip-flop, no 

state decoding logic is necessary. Consequently, the one-hot state assignment reduces the 

next-state decoding logic because the next state of the machine is determined by the input 

and one active flip-flop. Overall, the complete circuit may have more logic than a binary 

encoded machine, but, on a per flip-flop basis, the simplified next-state logic replaces the 

deeper, slower, high fan-in logic of a binary encoded machine, thus decreasing logic delay 

between state transitions and enhancing speed. 

Another benefit from the one-hot assignment is the ability to break a state with deep 

input logic into redundant states with simplified input logic. The transition equation for each 

redundant state is composed of small groups of product terms which were in the equation 

for the original state. This will be demonstrated later in this chapter. 

The one-hot assignment is not always the best choice, however. As the number of states 

increases, the number of flip-flops increases one for one, whereas the number of flip-flops 

increases with log2(S) (where S is the number of states) for binary assignment. For small 

state machines with few inputs and simple next-state logic, binary encoding might be the 

best choice because the number of flip-flops can be conserved. 
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For example, the Xilinx XC3000 family of devices uses a 5-input look-up table (LUT) 

to implement combinational logic. If a modulo-32 counter is needed in a design, and it 

requires no control lines besides an asynchronous reset, which is handled outside the LUT, 

then a binary state assignment would be satisfactory because the only inputs to the LUTs 

would be the five present state outputs of the flip-flops. This approach would also conserve 

flip-flops. 

On the other hand, if only one control line is needed, perhaps an "enable", then one input 

of each LUT would be consumed for the control line, leaving only four for present state 

inputs. In this case, assuming the binary state assignment, a modulo-16 counter would be 

the largest counter possible without introducing an extra LUT (in another CLB) for each 

flip-flop. Therefore, every flip-flop would require two levels of CLBs to implement the 

modulo-32 counter. The additional delay between the CLBs would cut the counter's speed 

significantly. Under this condition, the binary state assignment would not be appropriate. 

Another potential pitfall is that the number of invalid states in a one-hot assignment far 

outweighs the number of valid ones. A 5-state state machine requires five flip-flops if a one- 

hot state assignment is used, but there are 32 possible states associated with five flip-flops. 

Therefore, this relatively simple state machine would have 27 invalid states! The extra logic 

required to account for all or most of the illegal states could create longer signal paths and 

significantly slow down the state machine erasing the benefits of the one-hot state 

assignment. Thus, the one-hot assignment delivers simplicity and speed for the cost of lower 

reliability and inefficient usage of flip-flops. 

- The designer must be intimately familiar not only with the details of the design itself, but 

also with the target technology, which dictates the appropriate logic structures that give the 

best performance. Thus, the choice of state assignments is dependent upon the state 

machine itself and the technology implementing it. In the above example, a counter based on 
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a Linear Feedback Shift Register (LFSR) is the best solution because it requires only five 

flip-flops and little combinational circuitry to implement,  making it appropriate for 

LUT-based FPGA technology. 

B. LUT IMPLEMENTATION 

The 5-input LUT implements the logic to the D-input of each flip-flop in the CLBs of 

the Xilinx 3064 LCA that was used to implement the encoder design. The actual structure 

of the combinational circuit is not a concern because the LUT has a constant delay across it 

regardless of the logic function it realizes (Xilinx, 1994, p. 2-111). The main concern is 

whether the LUT has enough inputs to accommodate the number of variables in the logic 

function. For a 5-variable function, the LUT must have five available inputs. The LUT acts 

as a 32 X 1 RAM whose 5 address lines are the five inputs of the logic function, and whose 

1-bit outputs are the active or inactive result of each of the 32 possible product terms. To 

select state assignments for the state machines in the encoder design, each state machine 

was studied to determine the number of inputs necessary for the next state decoding logic 

for each flip-flop. The goal is to keep the number of inputs below five so that the complete 

decoding function for each state flip-flop is contained in the flip-flop's companion LUT. The 

SEQUENCER block is used here to illustrate the method and to compare to a binary 

assignment. 

Table 6.1 shows the state table for the SEQUENCER block. The state diagram is shown 

in Figure 6.1. Table 6.2 lists the state transition equations and the required number of inputs 

to the LUT for each flip-flop. For example, s3 is the next one-hot state if SEQUENCER is 

in state 2 and the "n(2:0)H input is a binary pattern other than "010". As Table 6.2 shows, 

the fan-in to each one-hot state flip-flop except for si is less than five inputs, suggesting that 

the next state logic for those flip-flops can be completely contained in their respective 

43 



LUTs. State si must be split into several redundant states to simplify    fan-in logic. This 

matter is dealt with in Section C. 

Table 6.3 shows the state transition equations for a state machine with a binary state 

TABLE 6.1: STATE TABLE FOR SEQUENCER BLOCK 

STATE 
INPUT n(2:0) 

OUTPUT 000 001 010 011 100 101 110 111 

sO si si si si si si si si 0 

si s2 s2 s2 s2 s2 s2 s2 s2 m(l) 

s2 s3 s3 si s3 s3 s3 s3 s3 m(2) 

s3 s4 s4 s4 si s4 s4 s4 s4 m(3) 

s4 s5 s5 s5 s5 si s5 s5 s5 m(4) 

s5 s6 s6 s6 s6 s6 si s6 s6 m(5) 

s6 si si si si si si si si m(6) 

assignment. The state assignment is: sO = "000", si = "001", s2 = "010", s3 = "011", 

s4 = "100", s5 = "101", and s6 = "110". D2, Dl, and DO are the inputs to the state flip- 

flops, and they represent the next state of the machine. Note that in this table, sO through s6 

represent the 3-bit present state, whereas they represent a 1-bit present state in the one-hot 

TABLE 6.2: STATE TRANSITION EQUATIONS (ONE-HOT) 

STATE TRANSITION EQUATIONS 
DO = reset 
Dl = sO + s2-(010) + s3-(011) + s4-(100) + s5-(101) + s6 
D2 = sl 
D3 = s2-(!010) 
D4 = s3-(!011) 
D5 = s4-(!100) 
D6 = s5-(!101) 

#LUT 
INPUTS 

0 

_4_ 
4 

44 



assignment (Table 6.2). For example, flip-flop input D2 would be asserted high if the 

present state is s3 with "n(2:0)" = !("011"), if the present state is s4 with 

"n(2:0)H = !("100"), or if the present state is s5 with "n(2:0)n = !("101"). The exclamation 

/        ~\        n(2:0ym() 

(000+O0l-KII0ym(2) 

!100/m(4) 
l011'm(3) 

Figure 6.1. State diagram for SEQUENCER block. 

point represents Boolean negation. Thus, the next state logic input for D2 consists of the 

3-bit encoded state and the 3-bit input, n(2..0), for a total of six inputs to the LUT. Indeed, 

all three flip-flops for the binary state assignment require six or seven inputs. Since 

theBoolean equations for the D inputs cannot be placed in the proper form for a single LUT 

to implement as a 6- or 7-variable function (see Chapter V), more than one LUT is needed 

for every flip-flop D-input. 
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TABLE 6.3: STATE TRANSITION EQUATIONS (BINARY) 

STATE TRANSITION EQUATIONS 
D2 = s3-(!011) + s4-(!100) + s5-(!101) 

1 Dl = si + s2-(!010) + s5-(!lÖT) 
DO = reset + si +s3-(!011) + s5-(!101) 

#LUT 
INPUTS 

C. EXPLOTITNG REDUNDANT STATES 

The one-hot technique is attractive for the SEQUENCER state machine because, as 

Table 6.2 shows, all states except si require fewer than five inputs and therefore only one 

LUT. State si, as mentioned earlier, can be broken up into several redundant states: si1, si", 

and si'". All three states yield the same output and proceed to the same next state as the 

original si under the same conditions that allowed the original transition. In this machine, si 

proceeds to only one state, s2, regardless of the input values. Therefore, s2 is the next state 

for all of the primed si's. Table 6.4 shows the new state table and Figure 6.2 

TABLE 6.4: STATE TABLE WITH REDUNDANT STATES (ONE-HOT) 
  

STATE 
INPUT n(2:fl ) 

OUTPUT 000 001 010 011 100 101 110 111 

sO si' si' si' si' si' si' si' si' 0 

sr s2 s2 s2 s2 s2 s2 s2 s2 m(l) 
si" s2 s2 s2 s2 s2 s2 s2 s2 m(l) 

si'" s2 s2 s2 s2 s2 s2 s2 s2 m(l) 
s2 s3 s3 si" s3 s3 s3 s3 s3 m(2) 
s3 s4 s4 s4 si" s4 s4 s4 s4 m(3) 
s4 s5 s5 s5 s5 si'" s5 s5 s5 m(4)      | 
s5 s6 s6 s6 s6 s6 si'" s6 s6 m(5)      | 
s6 si' si' si' si' si' si' si' si' m(6)      | 

shows the new state diagram. Table 6.5 shows the new transition equations. The equations 

for si', si", and si"' were previously part of the transition equation for si. Groups of 
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product terms have been broken out and assigned to the new states of si', si", and si"'. 

Now the next state decoding logic for each flip-flop (and each state) is simple enough to 

reside in a single LUT. Speed can be maximized. 

Note that splitting a state in the binary state assignment would accomplish nothing 

because the states are encoded. Six LUT inputs would still be required to distinguish all of 

the states: three for the state machine inputs and three for the encoded states. In general, 

!10l/m(5) 

Q^-^OIO/m(2)        /!OIO/m(2) 

*0U'm<3) / 

!011/m(3) 

Figure 6.2. State diagram for one-hot assignment and redundant states. 

with the one-hot state assignment, any complicated next-state logic can be broken down 

into a set of less complex circuits whose outputs are assigned to redundant states. There are 

fewer inputs required to activate these redundant states than for the original state so that all 

the combinational logic for each flip-flop may reside in the companion LUT. 
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All state machines in the encoder were synthesized with a one-hot state assignment after 

using this analysis on each machine. The handshaking state machine, HANDSHAK, is the 

TABLE 6.5: STATE TRANSITION EQUATIONS WITH 
REDUNDANT STATES (ONE-HOT) 

TRANSITION EQUATIONS #LUT 
INPUTS 

DO = reset 0 

Dl'= s6 1 
Dl" = s2-(010) + s3-(011) 5 
Dlm = s4-(100) + s5-(101) 5 
D2 = sl' + sl" + slH' 3 

D3 = s2-(!010) 4 

D4 = s3-(!0in 4 
D5 = s4-(!100) 4 

D6 = s5-(!10n 4 

only one appropriate for binary encoding because it has only three states. In fact, it fits into 

a single CLB. 

The next chapter explains the process of adding pipeline registers to the encoder design 

and implementing it in the Xilinx XC3064PG138-100 LCA 
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VIL FPGA IMPLEMENTATION 

This chapter describes the sequence of events leading to an LCA implementation of the 

programmable convolutional encoder. It discusses the Xilinx CAD programs, and some 

minor differences between the hardware and the VHDL model. The chapter also covers the 

addition of pipelining registers, and offers comments on the use of the Mentor Graphics 

Autologic tool and back annotation into VHDL. 

A. OVERVIEW 

All state machine circuitry was derived from the state diagrams in Appendix C. These 

diagrams are the result of the same analysis procedure described for the SEQUENCER 

block in the last chapter. The circuitry for the remaining blocks of the design were produced 

directly from the VHDL source code by hand. Originally, this phase was to be done by the 

Autologic tool, but that tool was not useful for reasons outlined later in the chapter. 

The design was implemented as closely as possible according to what is dictated by the 

VHDL source code. The only difference between the LCA and VHDL versions of the 

design is the behavior of the global reset line, "reset", and the latency that occurs as a 

consequence of pipelining. In the LCA version, "reset" is active high because the 

asynchronous reset of the individual flip-flops in the CLBs (input RD) are active high. Refer 

to Figure 5.3. Because all of the state machines have a reset state with one state flip-flop 

high, and because none of the flip-flops have a preset input, one input of the LUT feeding 

the high flip-flop must be used as an OR gate to force the flip-flop high on the clock edge 

following the activation of "reset". Therefore, "reset" is synchronous. Despite the fact that 

"reset" must be synchronous because of one preset flip-flop in the reset state of each state 

machine, the other state flip-flops are reset using the asynchronous RD inputs to avoid 
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wasting an LUT input for resetting. Table 7.1 lists the convolutional codes possible with 

this design. 

B. IMPLEMENTATION FLOW 

1. Schematic Capture 

All schematic capture and Xilinx related development of the encoder design was 

done in the Mentor Graphics version 7.0 environment because this version is the only one 

for which the Xilinx macro libraries are installed. Despite the fact that all high level 

modeling was done in Mentor Graphics version 8.2, inputting schematics in the older 

version was not a problem as one might think. There were no gate level schematics done in 

the newer version, so there was no incompatibility problem with schematics being translated 

to the older version. Shifting to the older CAD system came at a convenient break in the 

implementation flow where schematics were manually derived from the VHDL code. After 

schematics were translated from VHDL, they were entered with LCA_NETED, the 

schematic capture program in Mentor Graphics, version 7.0. 

2. Functional Verification 

To verify functional operation, a TESTBENCH schematic was generated which 

incorporated the encoder block and a test circuit. This TESTBENCH is similar to the 

TESTBENCH concept used in VHDL modeling where a stimulus file interacts with the 

circuit under test while outputs and test points are monitored. The test circuit in this 

graphical TESTBENCH provides the same test message to the encoder as the VHDL 

STIMULUS file used in the high level model. By using the same test pattern, the output of 

the LC A implementation was easily compared to a known correct output produced from the 

VHDL model. 

The test circuit only provided the test pattern, however, because it needs to take 

"en" from the INJENBLE block as an input, just as the STIMULUS block did in the high 
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TABLE 7.1.   CONVOLUnONAL CODES. 
(Proakis, 1989, pp. 466 - 471) 

Rate L Connection Vectors (octal) 
1/2 3 5,7 

4 15,17 
5 23,35 
6 53,75 
7 133, 171 
8 247, 371 

1/3 3 5,7,7 
4 13, 15,17 
5 25, 33, 37 
6 47, 53, 75 
7 133, 145, 175 
8 225,331,367 

1/4 3 5, 7, 7, 7 
4 13, 15, 15, 17 
5 25, 27, 33, 37 
6 53, 67, 71, 75 
7 135, 135, 147, 163 
8 235,275,313,357 

1/5 3 7, 7, 7, 5, 5 
4 17, 17, 13, 15, 15 
5 37, 27, 33, 25, 35 
6 75, 71, 73, 65, 57 
7 175, 131, 135, 135, 147 
8 257, 233, 323, 271, 357 

1/6 3 7, 7, 7, 7, 5, 5 
4 17, 17, 13, 13, 15, 15 
5 37, 35, 27, 33, 25, 35 
6 73, 75, 55, 65, 47, 57 
7 173, 151, 135, 135, 163, 137 
8 253,375,331,235,313,357 

2/3 2 17,06,15 
3 27, 75, 72 
4 236, 155, 337 

2/5 2 17,07, 11, 12,04 
3 27, 71, 52, 65, 57 
4 247, 366, 171, 266, 373 

3/4 2 13, 25, 61, 47 
3/5 2 35, 23, 75, 61, 47 
4/5 2 237, 274, 156, 255, 337 
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level model. The version 7.0 environment does not have a VHDL compiler, so the test 

circuit and a MISL file were used instead. MISL files cannot take inputs, so the test circuit 

provides the test pattern because it must react to the response of the encoder. The MISL 

file provides connection vectors. The clock period, k(2:0), n(2:0), and reset were controlled 

from the command line during each simulation run. Outputs were checked against the same 

four code rates used in the high level model: 1/2, 2/3, 3/5, and 1/6. The program 

LCA_EXPAND_SIM was run on the schematic to convert it to a format compatible with 

the Mentor Graphics QuickSim simulator. 

3.   LCA Implementation 

To progress from a schematic of the design in the Mentor Graphics environment to 

an LCA implementation, the following CAD programs were run in the order given. 

a. LCAJEXPAND and EREL2XNF 

LCA_EXPAND reformats the schematic into a format appropriate for input to 

EREL2XNF which outputs a Xilinx Netlist Format (XNF). (Messa, 1991, p. 67) The XNF 

file is a standard format used by the Xilinx Development System. Designs described with 

Boolean equations, schematics, or hardware description languages are converted to XNF 

files before further processing. (Lautzenheiser, 1989, p. 2) 

b. XNFMAP 

XNFMAP maps the logic defined by the XNF file to CLBs and IOBs and 

removes unnecessary logic. It places the resulting logic partitioning into a MAP file, which 

is the input to MAP2LCA and creates a cross-reference report file (CRF) which contains a 

summary of LCA resource usage and cross-references between original logic elements and 

LCA design elements. (Xilinx, 1991, p. 13-1) 
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c.   MAP2LCA 

The MAP2LCA program uses the data in the MAP file to partition the design 

into a particular Xilinx LCA, in this case an XC3064PG132-100, and places the results into 

a Logic Cell Array (LCA) file. It also creates a constraints file (SCP) that contains the initial 

placement of the design and lists placement and routing constraints specified in the 

schematic. Lastly, it abbreviates full hierarchical path names of signal and symbols and lists 

them in an AKA file. (Xilinx, 1991, pp. 7-1 - 7-3) 

4.  CLB Placement and Routing 

a. Automatic Place and Route 

The Automatic Place and Route (APR) program takes an LCA file as input and 

uses the popular optimization algorithm called Simulated Annealing to generate an optimal 

placement of CLBs in the LCA architecture to minimize delays. Documentation is written to 

a report file (.rpt) and the routed design is written to another LCA file. The input LCA file 

may already have placement and routing information from a previous APR run. Using the 

correct command line option with APR allows the user to add more features to an already 

routed design. This practice Xilinx calls "incremental design". The APR program has many 

options that provide the user with varying degrees of control over the APR process. The 

user can even tell APR exactly where to place CLBs that contain particular parts of the 

design. The user exercises control over APR with Constraint Files. (Xilinx, 1991, pp. 2-1 

-2-11) 

b. Constraint Files 

It is impossible for the APR program to know which signals of the design are the 

most critical simply by looking at the input LCA file. If it gets no outside advice from the 

designer, it randomly decides where to place CLBs and which signals to route in the faster 

routing resources on the LCA. If the critical path ends up smaller than the clock period, this 
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is satisfactory. Otherwise, the design will be too slow. The higher the performance needed 

from the LCA, the more help is needed from the user. 

To give the APR program guidance, a User Constraint file is used. The entries in 

this file override any guidance derived solely from the schematics themselves. Using the 

constraints file, the designer can give APR implementation hints such as where to place 

certain CLBs, which type of routing resources to use for the timing-critical signals, which 

blocks and nets to freeze before placement and routing of additional circuitry, and which 

areas of the LCA to leave open. Taking full advantage of constraint files requires a very 

detailed knowledge of both the LCA architecture and the capabilities of the Xilinx software 

package. Xilinx has issued many Application Notes about its products. They should be 

studied carefully to realize high performance designs.   (Xilinx, 1991, p. 2-12) 

Constructing the constraints file was a very tedious process. Because the 

XNFMAP program eliminates some unnecessary logic and attaches cryptic names to all the 

nets, it is necessary to study the cross-reference report (CRF) file along with the schematic 

diagram to discern which signal is which. The new net names were used in the constraints 

file. The solution to this tedium is to name all the critical nets as the schematic diagrams are 

entered. The names are retained throughout the implementation flow. 

5. Functional Verification of Back-Annotated Design 

a.   LCA2XNF 

If a placed and routed LCA file is translated to an XNF file with the LCA2XNF 

program, then the XNF file contains worst-case block and net delays. In that case, the XNF 

file is called back-annotated and can be simulated in QuickSim to verify timing 

requirements. (Xilinx, 1991, p. 4-1) The same TESTBENCH was used as for the functional 

verification of the design before back annotation. The TESTBENCH for both versions 

(before and after annotation) and an output waveform are in Appendix F. 
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b.   LCAjriMING 

This program takes a placed and routed LCA file and produces a new 

SIMSHEET which QuickSim uses for input. (Messa, 1991 p. 67) 

C. PIPELINING 

There were three places where propagation delays needed improvement: (1) in the 

8-to-l multiplexors of DATAREG, (2) in GENERATOR, and (3) in the SEQUENCER 

output. The Xilinx development system divides an 8-to-l multiplexor into two levels of 

CLBs that contribute two block delays plus routing delays. Message bits shift into 

SHIFTREG and sit there until the "load" input to DATAREG is active (low), and then they 

are shifted in parallel into DATAREG on a falling clock edge. Since GENERATOR is 

combinational, these changes at the output of DATAREG travel through GENERATOR to 

the input of SEQUENCER. At the following rising edge, SEQUENCER updates its state 

machine. Thus, only one half of a clock cycle was available for the new logic levels to get 

through GENERATOR. This path consisted of four levels of combinational CLBs between 

two registered ones making it the longest combinational path, or the critical path of the 

design. 

To eliminate DATAREG's input multiplexors and to improve GENERATOR'S 

combinational delay, SHIFTREG and DATAREG were replaced by a serial-to-parallel shift 

register with a clock enable input, and pipeline registers with a clock enable were added to 

GENERATOR. With the same control signals, the behavior was preserved. The "load" 

signal which formerly was an input to DATAREG, is now the "calc" (short for "calculate 

modulo-2 sums") input to GENERATORDFF. The "load" signal enables the pipeline 

registers to save a partial sum. The pipeline registers in GENERATORDFF now hold the 

input to SEQUENCER while the shift register performs both DATAREG's and 

SHEFTREG's former functions. The shift register now receives ^-tuples and holds them as 
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input for GENERATORDFF. The two levels of combinational delay due to the 8-to-l 

multiplexors is gone, and the pipeline registers added to GENERATOR were available as 

flip-flops in the CLBs that realized GENERATOR initially. Therefore, no additional routing 

delay was added by incorporating the pipeline registers The schematic of the new pipelined 

version of GENERATOR, called GENERATORDFF, is in Appendix E. Pipelining also 

improved the throughput of SEQUENCER'S output stage. The schematic of the new 

SEQUENCER, dubbed PIPESEQUENCER, is in Appendix E. 

1.  Pipeline Register Placement 

It is fairly simple to look at the schematic diagram of a block and see how the Xilinx 

Development System will partition the circuitry into CLBs. This was done to find 

appropriate locations for pipeline registers in GENERATORDFF and PIPESEQUENCER. 

Look at the GENERATOR block as an example. Examining one AND/XOR tree and 

remembering that each CLB look-up table can have four or five inputs, it is plain that the 

partitioning will occur as in Figure 7.1. Each tree consists of five CLBs arranged in two 

levels. The first level has four CLBs (one of which is delineated by the box) that feed into 

the second level which has only one CLB (also in a box). This was verified in the Xilinx 

XACT tool, which allows the user to navigate through the LCA to see how APR routed 

signals and configured CLBs. The pipeline registers are added to the schematic at the point 

shown in the figure so the next APR run will produce the same CLB partitioning but with 

the CLB outputs registered. Thus, pipeline registers are added without incurring any 

additional delay since the flip-flops reside in the CLBs anyway and just need to be wired in. 

The GENERATORDFF schematic shows the register placement. The "mod2_sums(6:l)" 

lines also go through a pipeline register which is in the PIPESEQUENCER schematic. 
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D. DESIGN PERFORMANCE 

1. Propagation Delay Estimation 

Signal paths in LCA devices generally start at the output of a flip-flop and travel 

through one or more levels of combinational CLBs to the input of another flip-flop. 

Therefore, the signals traveling the path are subject to the clock-to-output delay of the 

source flip-flop, routing delay between CLBs, combinational CLB propagation delay, and 

set-up time of the destination flip-flop. For estimation purposes, assume 18ns, total, for 

clock-to-output delay of the source registered CLB plus the set-up time for the destination 

registered CLB. Assume 12ns for each combinational CLB in the path including routing 

between CLBs. Since the XC3064 is one of the larger devices in the Xilinx XC3000 family, 

routing delays can be large. Therefore, assume an additional 3 ns to give 15ns of 

combinational delay per non-registered CLB. (New, 1994, p. 8-36) 

According to Xilinx's speed estimation method, the encoder design should be 

capable of a clock rate of about 15 MHz. With the addition of pipeline registers in the 

datapath, no datapath CLB is combinational. However, there is a combinational CLB at the 

output of both the LOADER and IN_ENBLE state machines that hurt performance. This 

problem should be addressed in future versions of this design. Thus, remembering that the 

control blocks and datapath blocks are clocked on opposite edges, the critical path has a 

delay of 15ns + 18ns or 33ns. Signals must traverse this delay in one half of the clock 

period; hence, the maximum clock rate of about 15 MHz. 

2. APR Iterations 

The programmable convolutional encoder was placed and routed three times. After 

each run, the back annotated LCA file was simulated in QuickSim, and the output 

waveforms were checked against the waveforms generated in the high level behavioral 

simulations. To estimate the maximum speed of the design, the clock period was repeatedly 
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decreased until the waveforms no longer matched. This value of the clock period is an 

estimate of the minimum clock period or maximum clock rate of the design. The maximum 

clock rate of the non-pipelined version is about 9.7 MHz. 

The pipelined version of the encoder was placed and routed twice, with and without 

a user constraints file. Without the constraints file, the clock rate dropped to about 8.3 MHz 

showing that pipelining by itself does not necessarily improve performance. The routing 

delays must also be minimized by using a constraint file to tell the APR program which 

signals are timing critical. With the constraints file, APR produced an implementation with a 

maximum clock rate of about 11.1 MHz - not much of an improvement. 

Most likely, another APR run is needed which uses a very detailed constraint file 

that allows APR to do almost nothing for itself. The file will include locations of CLBs, 

which type of routing resource to use for the most critical signals, etc. Since I/O pin 

assignments affect placement and routing, all signals which were originally brought out to 

I/O pins for monitoring purposes should be eliminated 

E. AUTOLOGIC 

Ultimately the Mentor Graphics AutoLogic tool was not useful. The intent was to 

use it to generate schematics to partition into units that would fit in Xilinx CLBs. Even 

though the ECE Department does not have the Xilinx libraries for Autologic to use, the 

actual schematics generated were important only to gauge fan-in logic to CLBs, making the 

libraries unnecessary. The idea was to partition the design into blocks with five or fewer 

inputs and enter the modified schematics into the old Mentor Graphics suite that has the 

Xilinx library. Unfortunately, when a CAD tool automatically produces output, the designer 

is to some extent giving up control over the outcome of the design process. This became 

quite apparent when Autologic produced schematics that were very difficult to decipher. 

Tracing through some of the logic showed that the CAD tool had implemented lots of 
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redundant logic with long signal paths, defeating the purpose of one-hot encoding. Further, 

the schematics were very complicated and disorganized. At least when the designer draws 

his own schematic, he can organize it in his own accurate, intelligible way. Many menu 

permutations were tried, but there was almost no improvement. Manually translating VHDL 

source code into the proper schematic diagrams proved to be much more efficient and 

useful. 

F. BACK ANNOTATION INTO VHDL CODE 

One of the original reasons for using VHDL in this thesis was to back annotate timing 

information into the VHDL code. However, after using the Xilinx development system to 

examine the completed placement and routing inside the LCA, it became obvious that back 

annotation would not be worth the long, tedious process required. It is very inefficient and 

error prone to navigate through a routed LCA attempting to pick out the appropriate delays 

for back annotation. The only reason to do back annotation at all is for detailed 

documentation of a particular implementation of a design. To back annotate for VHDL 

simulation purposes is simply doubling the designer's work because the design can be back 

annotated into the Quicksimll simulator anyway. As Steve Carlson of Synopsis, Inc. points 

out (Harr, 1991, p. 149), back annotating timing information into the VHDL code ties the 

VHDL description to a specific technology, defeating one of the most important reasons for 

using VHDL: to have an accurate description or specification of system behavior that is 

completely independent of the target technologies in which the design can be implemented. 

The timing information (setup and hold times, clock rates, etc.) is different for each 

technology. It is up to the designer to guarantee that the design behaves according to the 

VHDL code within the particular timing constraints imposed by the specific target system 

and target technology. 
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vm. CONCLUSION 

Convolutional encoding is a Forward Error Correction (FEC) technique used in 

continuous one-way and real time communication links. It can provide substantial 

improvement in bit error rates so that small, low power, inexpensive transmitters can be 

used in such applications as satellites and hand-held communication devices. This thesis 

documents the development of a programmable convolutional encoder implemented in an 

Field Programmable Gate Array (FPGA) and capable of coding a digital data stream with 

any one of 39 convolutional codes. It has a simple microprocessor interface, a register file 

for storage of code parameters, a test circuit, and a maximum bit rate of about 15 Mbits/s. 

The VHSIC Hardware Description Language (VHDL) is used to model abstract 

behavior and to define relationships between building blocks before hardware 

implementation in an XC3064 Logic Cell Array (LCA). An LCA is a type of FPGA made 

by Xilinx, Inc. Special design techniques like one-hot state assignment, pipelining, and 

exploitation of redundant states are employed to tailor the hardware to the LCA 

architecture. Because an FPGA is used for the hardware implementation, the design can be 

changed or expanded conveniently in the lab. In particularly flexible systems, several 

encoder designs can be stored in the system RAM, each one being downloaded into the 

FPGA under different circumstances. 

More work can be done on this programmable convolutional encoder design. The bit 

rate can be increased substantially by decreasing the combinational delays in the paths of the 

"en" and "load" control signals. More sophisticated use of User Constraint files along with 

various options available in the Xilinx CAD programs should add to the performance 

improvement. Xilinx has published many application notes, all of which should be studied 

very closely to get the full benefit that the LCA architecture offers. One in particular, 
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entitled Advanced Design Methodology (Simpson, 1989), covers methods of independently 

placing and routing building blocks of the design. It is reasonable to expect the output bit 

rate to approach 30 Mbits/s after those more sophisticated techniques are employed. A 

register based FIFO memory can also be implemented on the LCA. This was mentioned in 

Chapter III, and will make the programmable encoder easier to integrate into other systems. 

The top-down design paradigm proved to be very beneficial for this design. Several 

behavioral bugs were discovered and fixed at the beginning of the design cycle that would 

have been difficult to find in the later stages. More importantly, it forced a detailed 

definition of system partitioning and building block interaction before hardware became a 

factor in the design. Once all of the behaviors were defined, the hardware was easier to 

derive, and the effort was focused on optimizing the hardware design for the Xilinx LCA 

architecture. Actually implementing the design in a Xilinx LCA is easy if performance is not 

a significant concern; the APR program does all of the work and produces a mediocre 

result. If high performance is a concern, however, the designer must take control of the 

place and route process via User Constraint files, command line options available with APR, 

and advanced techniques outlined in the Xilinx application notes. 
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APPENDIX A 

VHDL SOURCE CODE 

A. SHIFTREG 

LIBRARY MGC_PORTABLE; 
USE MGC_PORTABLE.QSIM_LOGIC.ALL; 
USE MGC_PORTABLE.QSIM_RELATIONS.ALL; 

» This is the source code for the SHIFTREG block which is a 4-bit serial to parallel shift 
~ register. It takes serial message bits as input at "serialjnput" and provides them to the 
-- DATAREG block in parallel. It is enabled by "en" from the IN_ENBLE block. 

ENTITY shiftreg IS 
PORT (parallel_outl OUT BIT 

parallel_out2 OUT BIT 
parallel_out3 OUT BIT 
parallel_out4 OUT BIT 
serialinput IN BIT; 
clk,reset,en IN BIT); 

END shiftreg; 

ARCHITECTURE archl OF shiftreg IS 
SIGNAL q : BIT_VECT0R(4 DOWNTO 1); 

BEGIN 
PROCESS(clk, reset) 
BEGIN 

IF (reset = '0') THEN ~ asynchronous reset. 
q <= "0000"; 

ELSIF (clkEVENT AND elk = '0') THEN 
IF (en = T) THEN -- if "en" is active, shift contents 

— by 1 bit position and input new 
— message bit from "seriaHnput". 

q(4) <= q(3) 
q(3) <= q(2) 
q(2) <= q(l) 
q(l) <= serialinput; 

END IF; 
ELSE 
END IF; 

END PROCESS; 

parallel_outl <= q(l); - outputs of this block are 
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parallel_out2 <= q(2); 
parallel_out3 <= q(3); 
paraIlel_out4 <= q(4); 

- the outputs of the flip-flops. 

END archl; 
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B. DATAREG 

LIBRARY MGC_PORTABLE; 
USE MGC_PORTABLE.QSIM_LOGIC.ALL; 
USE MGC_PORTABLE.QSIM_RELATIONS.ALL; 

» This is the source code for the DATAREG block which shifts k-tuples 
- through an 8-bit register. It provides the parallel output of the 
-- register to the GENERATOR block. 

ENTITY datareg4 IS 
PORT (load : IN BIT; ~ enables k-tuple loading into DATAREG 

k : IN BITJVECTOR (2 DOWNTO 0); -- defines message bits/k-tuple 
kvect: OUT BITJVECTOR (7 DOWNTO 0); -- parallel output of DATAREG 
reset: IN BIT; -- system reset 
elk : IN BIT; - system clock 
in7, in6, in5, in4 : IN BIT);    - parallel inputs from SHIFTREG 

END datareg4; 

ARCHITECTURE archl OF datareg4 IS 
SIGNAL d : BITJVECTOR (7 DOWNTO 0);     - D input to flip-flop 
SIGNAL q : BITJVECTOR (7 DOWNTO 0);     » Q output of flip-flop 

BEGIN 

- Each D input gets the Q output of a different flip-flop depending on 
- the number of bits in a k-tuple. 

d(0) <= q(l) WHEN (k = "001") ELSE - 1 bit/k-tuple, 1-bit shift 
q(2) WHEN (k = "010") ELSE ~ 2 bits/k-tuple, 2-bit shift 
q(3) WHEN (k = "011") ELSE ~ 3 bits/k-tuple, 3-bit shift 
q(4); ~ 4 bits/k-tuple, 4-bit shift 

d(l) <= q(2) WHEN (k = "001") ELSE 
q(3) WHEN (k = "010") ELSE 
q(4) WHEN (k = "011") ELSE 
q(5); 

d(2) <= q(3) WHEN (k = "001") ELSE 
q(4) WHEN (k = "010") ELSE 
q(5) WHEN (k ="011") ELSE 
q(6); 

d(3) <= q(4) WHEN (k = "001") ELSE 
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q(5) WHEN (k = "010") ELSE 
q(6) WHEN (k = "011") ELSE 
q(7); 

d(4) <= q(5) WHEN (k = "001") ELSE 
q(6) WHEN (k = "010") ELSE 
q(7) WHEN (k = "011") ELSE 
in4; 

d(5) <= q(6) WHEN (k = "001") ELSE 
q(7) WHEN (k = "010") ELSE 
in5; — more than 2 bits/k-tuple 

d(6) <= q(7) WHEN (k = "001") ELSE 
in6; ~ more than 1 bit/k-tuple 

d(7) <= in7; -- d(7) always gets in7 

kvect <= q; ~ Q outputs of flip-flops form 
~ parallel output of DATAREG. 

PROCESS (elk, reset) 
BEGIN 

IF (reset = '0') THEN - asynchronous clear 
q <= "00000000"; 

ELSIF (clkEVENT AND elk = '0') THEN -- clock on falling edge only if 
IF (load = '0') THEN -- Q outputs get D inputs 

q<=d; ~ only if "load" input is low. 
END IF; 

ELSE 
END IF; 

END PROCESS; 
END archl; 
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C. GENERATOR 

LIBRARY MGCJPORTABLE; 
USE MGC_PORTABLE.QSIM_LOGIC.ALL; 
USE MGC_PORTABLE.QSIM_RELATIONS.ALL; 

-- The GENERATOR block provides 6 bits in parallel to the SEQUENCER block. 
- Each bit is the linear combination (bitwise AND followed by modulo-2 sum) 
— of a connection vector and the contents of the DATAREG block. 

ENTITY generator IS 
PORT (gl, g2, g3, g4, g5, g6 : IN BIT_VECT0R(7 DOWNTO 0); - connection vectors 

k_vect: IN BIT_VECT0R(7 DOWNTO 0);  - parallel output of DATAREG 
mod2_sums : OUT BIT_VECT0R(6 DOWNTO 1)); -- output of GENERATOR 

END generator; 

ARCHITECTURE archl OF generator IS 
BEGIN 

PROCESS(gl, g2, g3, g4, g5, g6, k_vect) 
VARIABLE sum : BITVECTOR (6 DOWNTO 1); -- each bit is a linear combination. 

— "tempx"s hold result of bitwise AND. 
VARIABLE temp   : BIT_VECTOR (7 DOWNTO 0); 
VARIABLE temp2 : BIT_VECTOR (7 DOWNTO 0); 
VARIABLE temp3 : BIT_VECTOR (7 DOWNTO 0); 
VARIABLE temp4, temp5, temp6 : BIT_VECTOR (7 DOWNTO 0); 

BEGIN 

temp2 := g2 AND k_vect; 
temp3 := g3 AND k_vect; 
temp4 := g4 AND k_vect; 
temp5 := g5 AND k_vect; 
temp6 := g6 AND kvect; 

— sum of bitwise AND between kvect and gl. 
sum(l) := templ(7) XOR templ(6) XOR templ(5) XORtempl(4) XOR 

templ(3) XOR templ(2) XOR templ(l) XOR templ(O); 

— sum of bitwise AND between k_vect and g2. 
sum(2) := temp2(7) XOR temp2(6) XOR temp2(5) XOR temp2(4) XOR 

temp2(3) XOR temp2(2) XOR temp2(l) XOR temp2(0); 

~ sum of bitwise AND between k_vect and g3. 
sum(3) := temp3(7) XOR temp3(6) XOR temp3(5) XOR temp3(4) XOR 
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temp3(3) XORtemp3(2) XOR temp3(l) XOR temp3(0); 

~ sum of bitwise AND between kvect and g4. 
sum(4) := temp4(7) XOR temp4(6) XOR temp4(5) XOR temp4(4) XOR 

temp4(3) XOR temp4(2) XOR temp4(l) XOR temp4(0); 

— sum of bitwise AND between k_vect and g5. 
sum(5) := temp5(7) XOR temp5(6) XOR temp5(5) XOR temp5(4) XOR 

temp5(3) XOR temp5(2) XOR temp5(l) XOR temp5(0); 

— sum of bitwise AND between k_vect and g6. 
sum(6) := temp6(7) XOR temp6(6) XOR temp6(5) XOR temp6(4) XOR 

temp6(3) XOR temp6(2) XOR temp6(l) XOR temp6(0); 

mod2_sums <= sum; ~ output is the six modulo-2 sums from above. 

END PROCESS; 

END archl; 
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D. IN.ENBLE 

LIBRARY MGC_PORTABLE; 
USE MGC_PORTABLE.QSIM_LOGIC.ALL; 
USE MGC_PORTABLE.QSIM_RELATIONS.ALL; 

— The IN_ENBLE block enables the SHIFTREG block long enough for SHIFTREG 
— to input k message bits. It inputs message bits while the SEQUENCER 
— block outputs code bits. 

ENTITY in_enble IS 
PORT (k : IN BIT_VECT0R(2 DOWNTO 0); -- bits per k-tuple. 

clk,reset load : IN BIT; ~ system clock and reset. 
load : IN BIT; - "load" signal from LOADER block. 
en : OUT BIT); - enable to SHIFTREG. 

END inenble; 

ARCHITECTURE archl OF in_enble IS 
TYPE states IS (state_0, state_l, state_2, state_3, state_4); 
SIGNAL state : states; 

BEGIN 
s:PROCESS(clk, reset) 

BEGIN 
IF (reset = '0') THEN       - asynchronous reset. 

state <= state_0; 
ELSIF (clkEVENT AND elk = T) THEN - if elk has changed, and it's 

CASE state IS -- now equal to' 1', THEN... 
WHEN state_0 => 

IF (load = '0') THEN -- if "load" is active, go to statej. 
state <=state_l; 

ELSE 
state <= statej);    ~ stay in state_0 until "load" is inactive. 

END IF; 
WHEN statej => 

IF ((k = "000") OR (k = "001")) THEN 
state <= statej); ~ if a k-tuple has 1 bit, go to statej). 

ELSE 
state <= state_2; ~ k is more than 1. 

END IF; 
WHEN state_2 => 

IF (k = "010") THEN - if a k-tuple has 2 bits, go to statej). 
state <= statej); 

ELSE 

69 



State <= state_3;     - k is more than 2. 
END IF; 

WHEN state_3 => 
IF (k = "011") THEN -- if a k-tuple has 3 bits, go to state_0. 

state <= state_0; 
ELSE 

state <= state_4;     — k is more than 3. 
END IF; 

WHEN state_4 => 
state <= state 0;     ~ k is 4 or more. 

END CASE; 
ELSE 
END IF; 

END PROCESS s; 

PROCESS (state) 
BEGIN 

IF (state = state_0) THEN 
en <= -o'; - keep SHIFTREG disabled until "load" is active. 

ELSE 
en <='i'; .. enable SHIFTREG, input serial message bits. 

END IF; 
END PROCESS; 

END archl; 

70 



E. LOADER 

LIBRARY MGC_PORTABLE; 
USE MGC_PORTABLE.QSIM_LOGIC.ALL; 
USE MGC_PORTABLE.QSIM_RELATIONS.ALL; 

ENTITY newload IS 
PORT (n : IN BIT_VECT0R(2 DOWNTO 0); 

clk,reset : IN BIT; 
load       : OUT BIT); 

END newload; 

» This is the source code for the LOADER block. LOADER outputs "load" which enables 
- DATAREG to input a k-tuple in parallel. It also synchronizes "en" which is the 
- output of the IN_ENBLE block that allows SHIFTREG to take serial data. 

ARCHITECTURE archl OF newload IS 
TYPE states IS (state_l, state_2, state_3, state_4, state_5, state_6); 
SIGNAL state: states; 

BEGIN 
s:PROCESS(clk, reset) 
BEGIN 

IF (reset = '0') THEN ~ asynchronous reset. 
state <=state_l; 

ELSIF (clk'EVENT AND elk = T) THEN -- clock on rising edge. 
CASE state IS 

WHEN state_l => ~ go to state_2 regardless of n(). 
state <= state_2; 

WHEN state_2 => 
IF ((n = "000") OR (n = "001") OR (n = "010")) THEN 

state <= state_l; — go to state_l if each n-tuple has 2 bits, 
ELSE -- defaults to n = 2 if n < 2. 

state <= state_3; — n has more than 2 bits. 
END IF; 

WHEN state_3 => 
IF (n = "011") THEN      ~ go to state_l if each n-tuple has 3 bits. 

state <=state_l; 
ELSE 

state <= state_4; — n-tuple has more then 3 bits. 
END IF; 

WHEN state_4 => 
IF (n = " 100") THEN      ~ go to state_l if each n-tuple has 4 bits, 

state <=state_l; 
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— n-tuple has more than 4 bits. 

— go to statel if each n-tuple has 5 bits. 

— n-tuple has 6 bits, 
-- defaults to 6 if n > 6. 

ELSE 
state <= state_5; 

END IF; 
WHEN state_5 => 

IF (n = "101") THEN 
state <=state_l; 

ELSE 
state <= state_6; 

END IF; 
WHEN state_6 => 

state <=state_l; 
END CASE; 

ELSE 
END IF; 

END PROCESS s; 

PROCESS (state) 
BEGIN 

IF (state = state_l) THEN 
load <= '0'; — "load" output is active in state_l. 

ELSE 
load <= T; - "load" is inactive in all other states. 

END IF; 
END PROCESS; 

END arch 1; 
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F.  SEQUENCER 

LIBRARY MGC_PORTABLE; 
USE MGC_PORTABLE.QSIM_LOGIC.ALL; 
USE MGC_P0RTABLE.QSIM_RELATI0NS.ALL; 

ENTITY sequencer3 IS 
PORT (n : IN BIT_VECT0R(2 DOWNTO 0); 

mod2_sums : IN BIT_VECT0R(6 DOWNTO 1); 
serial_output: OUT BIT; 
elk, reset      : IN BIT); 

END sequencer3; 

~ This is the source code for the SEQUENCER block. Depending on the 
~ value of n, SEQUENCER selects the appropriate bits from "mod2_sums" 
~ and outputs them through "serialoutput" on the negative clock edge. 

ARCHITECTURE archl OF sequence^ IS 
TYPE states IS (state_0, state_l, state_2, state_3, state_4, state_5, state_6); 
SIGNAL state: states; 
SIGNAL serial: BIT := '0'; 

BEGIN 
s:PROCESS(clk, reset) 
BEGIN 

IF (reset = '0') THEN ~ asynchronous reset. 
state <= state_0; 

ELSIF (clk'EVENT AND elk = T) THEN - state machine transitions on 
CASE state IS - rising clock edge. 

WHEN state_0 => ~ go to state_l regardless of the inputs. 
state <=state_l; 

WHEN state_l => ~ go to state_2 regardless of the inputs. 
state <= state_2; 

WHEN state_2 => 
IF (n="000H OR n="001" OR n="010") THEN-- if 2 bits/n-tuple, go to statej, 

state <= state_l; ~ n < 2 defaults to 2. 
ELSE 

state <= state_3; ~ more than 2 bits/n-tuple. 
END IF; 

WHEN state_3 => 
IF (n = "Oil") THEN 

state <= state_l; ~ 3 bits/n-tuple. 
ELSE 

state <= state_4; ~ more than 3 bits/n-tuple. 
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END IF; 
WHEN state_4 => 

IF (n = " 100") THEN 
state <= state_l;     ~ 4 bits/n-tuple. 

ELSE 
state <= state_5;     - more than 4 bits/n-tuple. 

END IF; 
WHEN state_5 => 

IF (n = "101") THEN 
state <= state_l;      - 5 bits/n-tuple. 

ELSE 
state <= state_6;      ~ more than 5 bits/n-tuple. 

END IF; 
WHEN state_6 => 

state <= state_l;      ~ 6 bits/n-tuple.(n>6 defaults to 6). 
END CASE; 

ELSE 
END IF; 

END PROCESS s; 

~ mux structure that uses state flip-flops to select bits of "mod2_sums" for output. 
WITH state SELECT 
serial<= mod2_sums(l) WHEN state_l, 

mod2_sums(2) WHEN state_2, 
mod2_sums(3) WHEN state_3, 
mod2_sums(4) WHEN state_4, 
mod2_sums(5) WHEN state_5, 
mod2_sums(6) WHEN state_6, 
•0' WHEN state_0; 

PROCESS (elk, reset) 
BEGIN 

IF (reset = '0') THEN ~ asynchronous reset. 
serial_output <= '0'; 

ELSIF (clkEVENT AND elk = '0') THEN 
serial_output <= serial;    ~ send code bits on falling edge of clock. 

END IF; 
END PROCESS; 

END arch 1; 
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G. HANDSHAK 

LIBRARY MGC_PORTABLE; 
USE MGC_PORTABLE.QSIM_LOGIC.ALL; 
USE MGC_PORTABLE.QSIM_RELATIONS.ALL; 

- HANDSHAK is a small state machine inside the REGFILE block. 
— It provides the handshaking mechanism for the data bus. 

ENTITY handshak IS 
PORT (elk, reset: 

AS 
ASout 
DTACK 

END handshak; 

IN BIT;     -- system clock and reset. 
IN BIT;     ~ address strobe from microprocessor (active low). 
OUT BIT; ~ enable signal for loading registers in DATAREG. 
OUT BIT); ~ response to AS back to microprocessor (active low). 

ARCHITECTURE archl OF handshak IS 
= "01"; 
= "11"; 
= "00"; 
= "10"; 

CONSTANT statej: BIT_VECTOR 
CONSTANT state_2: BIT_VECTOR 
CONSTANT state_3: BIT_VECTOR 
CONSTANT state_4: BIT_VECTOR := "10"; -- not used 
SIGNAL state : BIT_VECTOR (1 DOWNTO 0); 

BEGIN 
a:PROCESS(clk, reset) 

BEGIN 
IF (reset = '0') THEN ~ asynchronous reset. 

state <=state_l; 
ELSIF (clk'EVENT AND elk = T) THEN -- clock on rising edge. 

CASE state IS 
WHEN statej => 

IF (AS = '0') THEN 
state <= state_2; 

ELSE 
state <=state_l; 

END IF; 
WHEN state_2 => 

state <= state_3; 
WHEN state_4 => 
WHEN state_3 => 

IF (AS = '1') THEN 
state <=state_l; 

ELSE 
state <= state_3; 

if AS is active, go to state_2. 

stay in state_l until AS is active. 

- go to state_3 regardless of AS. 
~ state_4 is not used. 

when AS becomes inactive, go to state_l. 

- stay in state_3 until AS is inactive. 
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END IF; 
END CASE; 

ELSE 
END IF; 

END PROCESS a; 

b:PROCESS (state) 
BEGIN 

IF (state = state_l) THEN        - state_l is the idle state, so 
ASout <= '0'; -- no registers are enabled, and 
DTACK <=' 1'; -- DTACK is inactive. 

ELSIF (state = state_2) THEN 
ASout <= '1'; ~ enable a register for 1 cycle. 
DTACK <= '1'; 

ELSIF (state = statej) THEN 
ASout <= '0'; - disable the register. 
DTACK <= '0'; - tell microprocessor that data has 

ELSE - been accepted. 
END IF; 

END PROCESS b; 

ENDarchl; 
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H. STIMULUS 

LIBRARY MGC_PORTABLE; 
USE MGC_PORTABLE.QSIM_LOGIC.ALL; 
USE MGC_PORTABLE.QSIM_RELATIONS.ALL; 

— The STIMULUS block provides the test message "info_vector" to the 
~ encoder. The connection vectors and k and n are changed manually 
~ to simulate different codes and constraint lengths. Of course, this 
— file should be recompiled and updated in the testbench TEST7. 
— This block takes "enM as an input from the INENBLE block and indexes 
— through the bits of the test message only when "en" is high. 

ENTITY stimulus IS 
PORT (k: OUT BIT_VECT0R(2 DOWNTO 0); - bits in a k-tuple. 

n: OUT BIT_VECT0R(2 DOWNTO 0); -- bits in an n-tuple. 
elk, reset: OUT BIT; — asynchronous reset, system clock. 
serialinput: OUT BIT; ~ test message output. 
~ connection vectors. 
Gl, G2, G3, G4, G5, G6: OUT BIT_VECT0R(7 DOWNTO 0); 
en: IN BIT); -- "en" from IN_ENBLE block. 

END stimulus; 

ARCHITECTURE archl OF stimulus IS 

SIGNAL clock,rst,flag : BIT := '0'; 
SIGNAL kjndex : INTEGER := 17; -- index for traversing bit-by-bit 

~ through infovector. 
CONSTANT info_vector : BIT_VECTOR (17 DOWNTO 1) := "10011101010000000"; 

BEGIN 
rst <= T AFTER Ons,     - resets chosen arbitrarily to make sure the encoder functions 

'0' AFTER 175ns, — properly after an asynchronous reset. 
T AFTER 375ns, 
•0'AFTER 11375 ns, 
T AFTER 11575 ns; 

. reset <= rst; 

k<="001"; 
n<="010"; 

Gl<= "10001101"; 

77 



G2<= "10101001"; 
G3 <= "10100010" 
G4<= "10011110" 
G5<= "10010011"; 
G6<= "10111101"; 

c:PROCESS 
BEGIN 

clock <=,0'; 
WAIT FOR 50ns; 
clock <= T; 
WAIT FOR 50ns; 

END PROCESS c; 

elk <= clock; 

PROCESS 
BEGIN 

WAIT ON clock, rst; 
IF (rst = '0') THEN 

k_index<= 17; 
seriaMnput <= '0'; 
WAIT FOR 5 ns; 

ELSIF (clock = '1') THEN 
IF (en ='1') THEN 

- Generate clock (arbitrarily chosen at 10 MHz). 

— If reset is active, 
— set index to first bit, 
— and zero the output. 
— Update signals. 
~ Otherwise, if rising clock edge, 
— and "en" from IN_ENBLE is active, then 

IF (kjndex = 1) THEN ~ check the index. If it is already at 1, 
kjndex <= 1; ~ then keep it there and 
flag <= '1'; -- set a flag. 

ELSE ~ If the index is not at 1, 
kjndex <= kjndex-1; - decrement it (go to next bit). 

END IF; 
ELSE 

IF (kjndex = 1 AND flag = '1') THEN -- If "en" not active, and the final bit was 
kjndex <= 17; -- transmitted last time "en" was active (flag=l), then set 
flag <= '0'; - index to first bit and reset the flag. 

END IF; 
END IF; 
WAIT FOR 5 ns; -- Update signals. 
serialjnput <= infoj/ector(k_index); ~ Send current bit of infoj/ector to output. 
WAIT FOR 5 ns; -- Update signals. 

END IF; 
END PROCESS; 

END arch 1; 
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APPENDIX B 

BEHAVIORAL TESTBENCH AND TIMING DIAGRAMS 

A. BEHAVIORAL TESTBENCH 

B. TIMING DIAGRAMS 

1. Figure B.l. 

Timing diagram for a rate 1/6 code. 

2. Figure B.2. 

Timing diagram for a rate 1/2 code. 

3. Figure B.3. 

Timing diagram for a rate 3/5 code. 

4. Figure B.4. 

Timing diagram for a rate 2/3 code. 
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APPENDIX C 

STATE DIAGRAMS FOR LCA 
IMPLEMENTATIONS OF STATE MACHINES 

A. IN_ENBLE 

Figure C.l. State diagram for INENBLE (one-hot, redundant state sO). 

B. LOADER 

Figure C.2. State diagram for LOADER (one-hot, redundant state si). 

C. SEQUENCER 

Figure C.3. State diagram for SEQUENCER (one-hot, redundant state si). 
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Figure C.l. State diagram for IN_ENBLE (one-hot, redundant state sO). 

Tigure C.2. State diagram for LOADER (one-hot, redundant state si) 
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!101/m(5) 

xxx/m(l) /ixx/mO) V / 

(     Si"'     ) f    sl,,    \^-^010/m(2)        /I010/m(2) 

011/m(3) 

I100/m(4) 

Figure C.3. State diagram for SEQUENCER (one-hot, redundant state sl). 
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APPENDIX D 

SCHEMATIC DIAGRAMS FOR NON-PIPELINED 
PROGRAMMABLE CONVOLUTIONAL ENCODER 

A. PROGRAMMABLE CONVOLUTIONAL ENCODER 

B. ENCODER 

C. SHD7TREG 

D. DATAREG 

E. GENERATOR 

F. SEQUENCER 

G. LOADER 

H. IN_ENBLE 

I.   REGFILE 

J.   HANDSHAK 

K. MUX 

L. TEST 
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APPENDIX E 

SCHEMATIC DIAGRAMS FOR PIPELINED BLOCKS 
OF PROGRAMMABLE CONVOLUTIONAL ENCODER 

This Appendix contains schematic diagrams only for the blocks to which pipeline 

registers were added. No other block was changed. All of the other schematics are in 

Appendix D. 

A. ENCODER 

B. GENERATORDFF 

C. PD7ESEQUENCER 
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APPENDIX F 

HARDWARE TESTBENCHES AND OUTPUT WAVEFORM 

A. SCHEMATIC DIAGRAMS 

1. Testbench 

Schematic diagram of testbench for the encoder before placement and routing. 

2. Testbenchb 

Schematic diagram of testbench for the encoder after placement and routing. 

B. OUTPUT WAVEFORM 

1.   Figure F.l. 

Output waveform for back annotated encoder design. 
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